MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Unicode version

Theorem exopxfr2 6200
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
exopxfr2  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. y E. z ( <. y ,  z >.  e.  A  /\  ps ) ) )
Distinct variable groups:    x, y,
z, A    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y, z)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 4712 . . . . . . 7  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
21biimpi 186 . . . . . 6  |-  ( Rel 
A  ->  A  C_  ( _V  X.  _V ) )
32sseld 3192 . . . . 5  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
43adantrd 454 . . . 4  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  ph )  ->  x  e.  ( _V  X.  _V )
) )
54pm4.71rd 616 . . 3  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  ph )  <->  ( x  e.  ( _V  X.  _V )  /\  ( x  e.  A  /\  ph )
) ) )
65rexbidv2 2579 . 2  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. x  e.  ( _V  X.  _V ) ( x  e.  A  /\  ph )
) )
7 eleq1 2356 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  A  <->  <. y ,  z
>.  e.  A ) )
8 exopxfr2.1 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
97, 8anbi12d 691 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ( x  e.  A  /\  ph ) 
<->  ( <. y ,  z
>.  e.  A  /\  ps ) ) )
109exopxfr 6199 . 2  |-  ( E. x  e.  ( _V 
X.  _V ) ( x  e.  A  /\  ph ) 
<->  E. y E. z
( <. y ,  z
>.  e.  A  /\  ps ) )
116, 10syl6bb 252 1  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. y E. z ( <. y ,  z >.  e.  A  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    C_ wss 3165   <.cop 3656    X. cxp 4703   Rel wrel 4710
This theorem is referenced by:  dvhopellsm  31929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-iun 3923  df-opab 4094  df-xp 4711  df-rel 4712
  Copyright terms: Public domain W3C validator