MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp4d Unicode version

Theorem exp4d 592
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4d.1  |-  ( ph  ->  ( ( ps  /\  ( ch  /\  th )
)  ->  ta )
)
Assertion
Ref Expression
exp4d  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp4d
StepHypRef Expression
1 exp4d.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ( ch  /\  th )
)  ->  ta )
)
21exp3a 425 . 2  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )
32exp4a 589 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  tfrlem9  6401  omass  6578  pssnn  7081  cardinfima  7724  ltexprlem7  8666  facdiv  11300  infpnlem1  12957  atcvatlem  22965  mdsymlem5  22987  mdsymlem7  22989  btwnconn1lem11  24720  exp5k  26211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator