MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp53 Structured version   Unicode version

Theorem exp53 602
Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
exp53.1  |-  ( ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  /\  ta )  ->  et )
Assertion
Ref Expression
exp53  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )

Proof of Theorem exp53
StepHypRef Expression
1 exp53.1 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  /\  ta )  ->  et )
21ex 425 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ( ta  ->  et ) )
32exp43 597 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  omordi  6812  xpdom2  7206  grplcan  14862  grpolcan  21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator