MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcnv Unicode version

Theorem expcnv 12322
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 10263 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1z 10053 . . . 4  |-  1  e.  ZZ
32a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  1  e.  ZZ )
4 nn0ex 9971 . . . . 5  |-  NN0  e.  _V
54mptex 5746 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
65a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
7 0cn 8831 . . . 4  |-  0  e.  CC
87a1i 10 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  0  e.  CC )
9 nnnn0 9972 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
10 oveq2 5866 . . . . . . 7  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
11 eqid 2283 . . . . . . 7  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
12 ovex 5883 . . . . . . 7  |-  ( A ^ k )  e. 
_V
1310, 11, 12fvmpt 5602 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
149, 13syl 15 . . . . 5  |-  ( k  e.  NN  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
15 simpr 447 . . . . . 6  |-  ( (
ph  /\  A  = 
0 )  ->  A  =  0 )
1615oveq1d 5873 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  ( A ^ k )  =  ( 0 ^ k
) )
1714, 16sylan9eqr 2337 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( 0 ^ k ) )
18 0exp 11137 . . . . 5  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1918adantl 452 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( 0 ^ k
)  =  0 )
2017, 19eqtrd 2315 . . 3  |-  ( ( ( ph  /\  A  =  0 )  /\  k  e.  NN )  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  0 )
211, 3, 6, 8, 20climconst 12017 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
222a1i 10 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  1  e.  ZZ )
23 expcnv.2 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  <  1 )
2423adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  <  1 )
25 expcnv.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
26 absrpcl 11773 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
2725, 26sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( abs `  A )  e.  RR+ )
2827reclt1d 10403 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
2924, 28mpbid 201 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  1  <  ( 1  /  ( abs `  A ) ) )
30 1re 8837 . . . . . . . . 9  |-  1  e.  RR
3127rpreccld 10400 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR+ )
3231rpred 10390 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( abs `  A ) )  e.  RR )
33 difrp 10387 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3430, 32, 33sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  <  ( 1  /  ( abs `  A
) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
3529, 34mpbid 201 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( 1  /  ( abs `  A ) )  -  1 )  e.  RR+ )
3635rpreccld 10400 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR+ )
3736rpcnd 10392 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC )
38 divcnv 12312 . . . . 5  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
3937, 38syl 15 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) )  ~~>  0 )
40 nnex 9752 . . . . . 6  |-  NN  e.  _V
4140mptex 5746 . . . . 5  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
4241a1i 10 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
43 oveq2 5866 . . . . . . 7  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
44 eqid 2283 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
45 ovex 5883 . . . . . . 7  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  _V
4643, 44, 45fvmpt 5602 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4746adantl 452 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  =  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k ) )
4836rpred 10390 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  RR )
49 nndivre 9781 . . . . . 6  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
5048, 49sylan 457 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
5147, 50eqeltrd 2357 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) ) `  k
)  e.  RR )
52 oveq2 5866 . . . . . . . 8  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
53 eqid 2283 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
54 ovex 5883 . . . . . . . 8  |-  ( ( abs `  A ) ^ k )  e. 
_V
5552, 53, 54fvmpt 5602 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
5655adantl 452 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
57 nnz 10045 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  ZZ )
58 rpexpcl 11122 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
5927, 57, 58syl2an 463 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
6056, 59eqeltrd 2357 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
6160rpred 10390 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
62 nnrp 10363 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  RR+ )
63 rpmulcl 10375 . . . . . . . 8  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6435, 62, 63syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
6564rpred 10390 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR )
66 peano2re 8985 . . . . . . . . . 10  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
6765, 66syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
68 rpexpcl 11122 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
6931, 57, 68syl2an 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
7069rpred 10390 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR )
7165lep1d 9688 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  +  1 ) )
7232adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
1  /  ( abs `  A ) )  e.  RR )
739adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  k  e.  NN0 )
7431rpge0d 10394 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
7574adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( 1  /  ( abs `  A ) ) )
76 bernneq2 11228 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7772, 73, 75, 76syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
7865, 67, 70, 71, 77letrd 8973 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( ( 1  /  ( abs `  A
) ) ^ k
) )
7927rpcnne0d 10399 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 ) )
80 exprec 11143 . . . . . . . . . 10  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
81803expa 1151 . . . . . . . . 9  |-  ( ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A )  =/=  0 )  /\  k  e.  ZZ )  ->  ( ( 1  / 
( abs `  A
) ) ^ k
)  =  ( 1  /  ( ( abs `  A ) ^ k
) ) )
8279, 57, 81syl2an 463 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
8378, 82breqtrd 4047 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  <_  ( 1  / 
( ( abs `  A
) ^ k ) ) )
8464, 59, 83lerec2d 10411 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( 1  / 
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k ) ) )
8535rpcnne0d 10399 . . . . . . 7  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 ) )
86 nncn 9754 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
87 nnne0 9778 . . . . . . . 8  |-  ( k  e.  NN  ->  k  =/=  0 )
8886, 87jca 518 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
89 recdiv2 9473 . . . . . . 7  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 )  =/=  0 )  /\  ( k  e.  CC  /\  k  =/=  0 ) )  -> 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
9085, 88, 89syl2an 463 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  =  ( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
9184, 90breqtrrd 4049 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( abs `  A
) ^ k )  <_  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
) )
9291, 56, 473brtr4d 4053 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
9360rpge0d 10394 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  NN )  ->  0  <_  ( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
941, 22, 39, 42, 51, 61, 92, 93climsqz2 12115 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
952a1i 10 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
965a1i 10 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
9741a1i 10 . . . . 5  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
989adantl 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
9998, 13syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
100 expcl 11121 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
10125, 9, 100syl2an 463 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
10299, 101eqeltrd 2357 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
103 absexp 11789 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
10425, 9, 103syl2an 463 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
10599fveq2d 5529 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
10655adantl 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
107104, 105, 1063eqtr4rd 2326 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
1081, 95, 96, 97, 102, 107climabs0 12059 . . . 4  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
109108biimpar 471 . . 3  |-  ( (
ph  /\  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
11094, 109syldan 456 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
11121, 110pm2.61dane 2524 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   RR+crp 10354   ^cexp 11104   abscabs 11719    ~~> cli 11958
This theorem is referenced by:  explecnv  12323  geolim  12326  geo2lim  12331  iscmet3lem3  18716  mbfi1fseqlem6  19075  geomcau  26475  stoweidlem7  27756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963
  Copyright terms: Public domain W3C validator