Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Unicode version

Theorem expdioph 27096
Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 928 . . . 4  |-  ( ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  \/  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  -.  (
a `  2 )  e.  NN ) ) )
2 ancom 439 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  ( a `  2
)  e.  NN )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )
3 elmapi 7040 . . . . . . . . . . . . 13  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
4 df-2 10060 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
5 df-3 10061 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
6 ssid 3369 . . . . . . . . . . . . . . . 16  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
75, 6jm2.27dlem5 27086 . . . . . . . . . . . . . . 15  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
84, 7jm2.27dlem5 27086 . . . . . . . . . . . . . 14  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
9 1nn 10013 . . . . . . . . . . . . . . 15  |-  1  e.  NN
109jm2.27dlem3 27084 . . . . . . . . . . . . . 14  |-  1  e.  ( 1 ... 1
)
118, 10sselii 3347 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 3
)
12 ffvelrn 5870 . . . . . . . . . . . . 13  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  1  e.  ( 1 ... 3 ) )  ->  ( a `  1 )  e. 
NN0 )
133, 11, 12sylancl 645 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  NN0 )
1413adantr 453 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( a ` 
1 )  e.  NN0 )
15 elnn0 10225 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN0  <->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
1614, 15sylib 190 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  NN  \/  ( a `
 1 )  =  0 ) )
17 elnn1uz2 10554 . . . . . . . . . . . 12  |-  ( ( a `  1 )  e.  NN  <->  ( (
a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
) )
1817biimpi 188 . . . . . . . . . . 11  |-  ( ( a `  1 )  e.  NN  ->  (
( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) ) )
1918orim1i 505 . . . . . . . . . 10  |-  ( ( ( a `  1
)  e.  NN  \/  ( a `  1
)  =  0 )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2016, 19syl 16 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  \/  (
a `  1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 ) )
2120biantrurd 496 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  \/  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  \/  ( a `  1
)  =  0 )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
22 andir 840 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
23 andir 840 . . . . . . . . . . 11  |-  ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  \/  ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) ) )
2423orbi1i 508 . . . . . . . . . 10  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  \/  ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
2522, 24bitri 242 . . . . . . . . 9  |-  ( ( ( ( ( a `
 1 )  =  1  \/  ( a `
 1 )  e.  ( ZZ>= `  2 )
)  \/  ( a `
 1 )  =  0 )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) )
26 nnz 10305 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  NN  ->  (
a `  2 )  e.  ZZ )
27 1exp 11411 . . . . . . . . . . . . . . . 16  |-  ( ( a `  2 )  e.  ZZ  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2826, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( a `  2 )  e.  NN  ->  (
1 ^ ( a `
 2 ) )  =  1 )
2928adantl 454 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 1 ^ ( a `  2
) )  =  1 )
3029eqeq2d 2449 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 1 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  1 ) )
31 oveq1 6090 . . . . . . . . . . . . . . 15  |-  ( ( a `  1 )  =  1  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 1 ^ ( a `  2
) ) )
3231eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  1  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 1 ^ (
a `  2 )
) ) )
3332bibi1d 312 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  1  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( 1 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
3430, 33syl5ibrcom 215 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  1  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  1 ) ) )
3534pm5.32d 622 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  1  /\  (
a `  3 )  =  1 ) ) )
36 iba 491 . . . . . . . . . . . . 13  |-  ( ( a `  2 )  e.  NN  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN ) ) )
3736adantl 454 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  <->  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN ) ) )
3837anbi1d 687 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
3935, 38orbi12d 692 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  \/  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) ) )  <->  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) ) )
40 0exp 11417 . . . . . . . . . . . . . 14  |-  ( ( a `  2 )  e.  NN  ->  (
0 ^ ( a `
 2 ) )  =  0 )
4140adantl 454 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( 0 ^ ( a `  2
) )  =  0 )
4241eqeq2d 2449 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( 0 ^ (
a `  2 )
)  <->  ( a ` 
3 )  =  0 ) )
43 oveq1 6090 . . . . . . . . . . . . . 14  |-  ( ( a `  1 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( 0 ^ ( a `  2
) ) )
4443eqeq2d 2449 . . . . . . . . . . . . 13  |-  ( ( a `  1 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( 0 ^ (
a `  2 )
) ) )
4544bibi1d 312 . . . . . . . . . . . 12  |-  ( ( a `  1 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 )  <-> 
( ( a ` 
3 )  =  ( 0 ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  0 ) ) )
4642, 45syl5ibrcom 215 . . . . . . . . . . 11  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 1 )  =  0  ->  ( (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) )  <->  ( a `  3 )  =  0 ) ) )
4746pm5.32d 622 . . . . . . . . . 10  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( a `  1 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) )  <->  ( (
a `  1 )  =  0  /\  (
a `  3 )  =  0 ) ) )
4839, 47orbi12d 692 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  \/  ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )  \/  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
4925, 48syl5bb 250 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( ( ( ( a ` 
1 )  =  1  \/  ( a ` 
1 )  e.  (
ZZ>= `  2 ) )  \/  ( a ` 
1 )  =  0 )  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5021, 49bitrd 246 . . . . . . 7  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  2
)  e.  NN )  ->  ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  <->  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) )
5150pm5.32da 624 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  e.  NN  /\  ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) ) )  <-> 
( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
522, 51syl5bb 250 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  ( a ` 
2 )  e.  NN ) 
<->  ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) ) )
53 ancom 439 . . . . . 6  |-  ( ( ( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN )  <-> 
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) ) )
54 2nn 10135 . . . . . . . . . . . 12  |-  2  e.  NN
5554jm2.27dlem3 27084 . . . . . . . . . . 11  |-  2  e.  ( 1 ... 2
)
567, 55sselii 3347 . . . . . . . . . 10  |-  2  e.  ( 1 ... 3
)
57 ffvelrn 5870 . . . . . . . . . 10  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
583, 56, 57sylancl 645 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
59 elnn0 10225 . . . . . . . . . . 11  |-  ( ( a `  2 )  e.  NN0  <->  ( ( a `
 2 )  e.  NN  \/  ( a `
 2 )  =  0 ) )
60 pm2.53 364 . . . . . . . . . . 11  |-  ( ( ( a `  2
)  e.  NN  \/  ( a `  2
)  =  0 )  ->  ( -.  (
a `  2 )  e.  NN  ->  ( a `  2 )  =  0 ) )
6159, 60sylbi 189 . . . . . . . . . 10  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  ->  ( a `  2 )  =  0 ) )
62 0nnn 10033 . . . . . . . . . . 11  |-  -.  0  e.  NN
63 eleq1 2498 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  2
)  e.  NN  <->  0  e.  NN ) )
6462, 63mtbiri 296 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  -.  ( a `  2
)  e.  NN )
6561, 64impbid1 196 . . . . . . . . 9  |-  ( ( a `  2 )  e.  NN0  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6658, 65syl 16 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  ( -.  ( a `  2
)  e.  NN  <->  ( a `  2 )  =  0 ) )
6766anbi1d 687 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) )
6813nn0cnd 10278 . . . . . . . . . . 11  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  1 )  e.  CC )
6968exp0d 11519 . . . . . . . . . 10  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 0 )  =  1 )
7069eqeq2d 2449 . . . . . . . . 9  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ 0 )  <->  ( a `  3 )  =  1 ) )
71 oveq2 6091 . . . . . . . . . . 11  |-  ( ( a `  2 )  =  0  ->  (
( a `  1
) ^ ( a `
 2 ) )  =  ( ( a `
 1 ) ^
0 ) )
7271eqeq2d 2449 . . . . . . . . . 10  |-  ( ( a `  2 )  =  0  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( a `  3 )  =  ( ( a ` 
1 ) ^ 0 ) ) )
7372bibi1d 312 . . . . . . . . 9  |-  ( ( a `  2 )  =  0  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 )  <-> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ 0 )  <-> 
( a `  3
)  =  1 ) ) )
7470, 73syl5ibrcom 215 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  2
)  =  0  -> 
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  <-> 
( a `  3
)  =  1 ) ) )
7574pm5.32d 622 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) )  <->  ( ( a `
 2 )  =  0  /\  ( a `
 3 )  =  1 ) ) )
7667, 75bitrd 246 . . . . . 6  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( -.  ( a `
 2 )  e.  NN  /\  ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
) )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7753, 76syl5bb 250 . . . . 5  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) )  /\  -.  ( a `
 2 )  e.  NN )  <->  ( (
a `  2 )  =  0  /\  (
a `  3 )  =  1 ) ) )
7852, 77orbi12d 692 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( ( a `
 3 )  =  ( ( a ` 
1 ) ^ (
a `  2 )
)  /\  ( a `  2 )  e.  NN )  \/  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  /\  -.  ( a `  2
)  e.  NN ) )  <->  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
791, 78syl5bb 250 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( a `  3
)  =  ( ( a `  1 ) ^ ( a ` 
2 ) )  <->  ( (
( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) ) )
8079rabbiia 2948 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  =  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }
81 3nn0 10241 . . . . 5  |-  3  e.  NN0
82 ovex 6108 . . . . . 6  |-  ( 1 ... 3 )  e. 
_V
83 mzpproj 26796 . . . . . 6  |-  ( ( ( 1 ... 3
)  e.  _V  /\  2  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8482, 56, 83mp2an 655 . . . . 5  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 2 ) )  e.  (mzPoly `  (
1 ... 3 ) )
85 elnnrabdioph 26869 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
) )
8681, 84, 85mp2an 655 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  e.  NN }  e.  (Dioph `  3 )
87 mzpproj 26796 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
8882, 11, 87mp2an 655 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 1 ) )  e.  (mzPoly `  (
1 ... 3 ) )
89 1z 10313 . . . . . . . . 9  |-  1  e.  ZZ
90 mzpconstmpt 26799 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  1  e.  ZZ )  ->  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )
9182, 89, 90mp2an 655 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  1 )  e.  (mzPoly `  (
1 ... 3 ) )
92 eqrabdioph 26838 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 ) )
9381, 88, 91, 92mp3an 1280 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  1 }  e.  (Dioph `  3 )
94 3nn 10136 . . . . . . . . . 10  |-  3  e.  NN
9594jm2.27dlem3 27084 . . . . . . . . 9  |-  3  e.  ( 1 ... 3
)
96 mzpproj 26796 . . . . . . . . 9  |-  ( ( ( 1 ... 3
)  e.  _V  /\  3  e.  ( 1 ... 3 ) )  ->  ( a  e.  ( ZZ  ^m  (
1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )
9782, 95, 96mp2an 655 . . . . . . . 8  |-  ( a  e.  ( ZZ  ^m  ( 1 ... 3
) )  |->  ( a `
 3 ) )  e.  (mzPoly `  (
1 ... 3 ) )
98 eqrabdioph 26838 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) )  /\  (
a  e.  ( ZZ 
^m  ( 1 ... 3 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  1 }  e.  (Dioph ` 
3 ) )
9981, 97, 91, 98mp3an 1280 . . . . . . 7  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  1 }  e.  (Dioph `  3 )
100 anrabdioph 26841 . . . . . . 7  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  1 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
10193, 99, 100mp2an 655 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
102 expdiophlem2 27095 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
103 orrabdioph 26842 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 ) )
104101, 102, 103mp2an 655 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) ) }  e.  (Dioph ` 
3 )
105 eq0rabdioph 26837 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  1
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 ) )
10681, 88, 105mp2an 655 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  1 )  =  0 }  e.  (Dioph `  3 )
107 eq0rabdioph 26837 . . . . . . 7  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  3
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
3 )  =  0 }  e.  (Dioph ` 
3 ) )
10881, 97, 107mp2an 655 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  0 }  e.  (Dioph `  3 )
109 anrabdioph 26841 . . . . . 6  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
1 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  0 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 ) )
110106, 108, 109mp2an 655 . . . . 5  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) }  e.  (Dioph ` 
3 )
111 orrabdioph 26842 . . . . 5  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) ) }  e.  (Dioph `  3 )  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
1 )  =  0  /\  ( a ` 
3 )  =  0 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )
112104, 110, 111mp2an 655 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) }  e.  (Dioph `  3 )
113 anrabdioph 26841 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  e.  NN }  e.  (Dioph `  3
)  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( ( a `  1
)  =  1  /\  ( a `  3
)  =  1 )  \/  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  ( a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 ) )
11486, 112, 113mp2an 655 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) ) }  e.  (Dioph `  3 )
115 eq0rabdioph 26837 . . . . 5  |-  ( ( 3  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... 3 ) ) 
|->  ( a `  2
) )  e.  (mzPoly `  ( 1 ... 3
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 ) )
11681, 84, 115mp2an 655 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  2 )  =  0 }  e.  (Dioph `  3 )
117 anrabdioph 26841 . . . 4  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( a ` 
2 )  =  0 }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( a `  3
)  =  1 }  e.  (Dioph `  3
) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 ) )
118116, 99, 117mp2an 655 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) }  e.  (Dioph ` 
3 )
119 orrabdioph 26842 . . 3  |-  ( ( { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  ( ( a `
 2 )  e.  NN  /\  ( ( ( ( a ` 
1 )  =  1  /\  ( a ` 
3 )  =  1 )  \/  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN )  /\  (
a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) ) )  \/  ( ( a `
 1 )  =  0  /\  ( a `
 3 )  =  0 ) ) ) }  e.  (Dioph ` 
3 )  /\  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( a ` 
2 )  =  0  /\  ( a ` 
3 )  =  1 ) }  e.  (Dioph `  3 ) )  ->  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ( ( ( a `  2 )  e.  NN  /\  (
( ( ( a `
 1 )  =  1  /\  ( a `
 3 )  =  1 )  \/  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 ) )
120114, 118, 119mp2an 655 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( ( a ` 
2 )  e.  NN  /\  ( ( ( ( a `  1 )  =  1  /\  (
a `  3 )  =  1 )  \/  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( a `  2
)  e.  NN )  /\  ( a ` 
3 )  =  ( ( a `  1
) ^ ( a `
 2 ) ) ) )  \/  (
( a `  1
)  =  0  /\  ( a `  3
)  =  0 ) ) )  \/  (
( a `  2
)  =  0  /\  ( a `  3
)  =  1 ) ) }  e.  (Dioph `  3 )
12180, 120eqeltri 2508 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( a `  3 )  =  ( ( a `
 1 ) ^
( a `  2
) ) }  e.  (Dioph `  3 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   {crab 2711   _Vcvv 2958    e. cmpt 4268   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   0cc0 8992   1c1 8993   NNcn 10002   2c2 10051   3c3 10052   NN0cn0 10223   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045   ^cexp 11384  mzPolycmzp 26781  Diophcdioph 26815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-numer 13129  df-denom 13130  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-mzpcl 26782  df-mzp 26783  df-dioph 26816  df-squarenn 26906  df-pell1qr 26907  df-pell14qr 26908  df-pell1234qr 26909  df-pellfund 26910  df-rmx 26967  df-rmy 26968
  Copyright terms: Public domain W3C validator