Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Unicode version

Theorem expdiophlem1 27130
Description: Lemma for expdioph 27132. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
Distinct variable groups:    A, d,
e, f    B, d,
e, f    C, d,
e, f

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 10100 . . . . . . . . . . 11  |-  2  e.  RR
21a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  e.  RR )
3 nnre 10038 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  RR )
4 peano2re 9270 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
53, 4syl 16 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  RR )
65adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( B  +  1 )  e.  RR )
7 nnz 10334 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
87peano2zd 10409 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  ZZ )
9 frmy 27015 . . . . . . . . . . . . 13  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
109fovcl 6204 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  ZZ )  -> 
( A Yrm  ( B  + 
1 ) )  e.  ZZ )
118, 10sylan2 462 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  ZZ )
1211zred 10406 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  RR )
13 elnnuz 10553 . . . . . . . . . . . . 13  |-  ( B  e.  NN  <->  B  e.  ( ZZ>= `  1 )
)
14 eluzp1p1 10542 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  1
)  ->  ( B  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
15 df-2 10089 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
1615fveq2i 5760 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
1714, 16syl6eleqr 2533 . . . . . . . . . . . . 13  |-  ( B  e.  ( ZZ>= `  1
)  ->  ( B  +  1 )  e.  ( ZZ>= `  2 )
)
1813, 17sylbi 189 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  ( ZZ>= `  2
) )
19 eluzle 10529 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  ( ZZ>= `  2
)  ->  2  <_  ( B  +  1 ) )
2018, 19syl 16 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  2  <_  ( B  +  1 ) )
2120adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  <_  ( B  +  1 ) )
22 nnnn0 10259 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  NN0 )
23 peano2nn0 10291 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  NN0 )
25 rmygeid 27067 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  NN0 )  -> 
( B  +  1 )  <_  ( A Yrm  ( B  +  1 ) ) )
2624, 25sylan2 462 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( B  +  1 )  <_  ( A Yrm  ( B  +  1 ) ) )
272, 6, 12, 21, 26letrd 9258 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  <_  ( A Yrm  ( B  + 
1 ) ) )
28 2z 10343 . . . . . . . . . 10  |-  2  e.  ZZ
29 eluz 10530 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  ( A Yrm  ( B  + 
1 ) )  e.  ZZ )  ->  (
( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  <->  2  <_  ( A Yrm  ( B  +  1 ) ) ) )
3028, 11, 29sylancr 646 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  <->  2  <_  ( A Yrm  ( B  +  1 ) ) ) )
3127, 30mpbird 225 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  (
ZZ>= `  2 ) )
3231adantl 454 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  e.  ( ZZ>= ` 
2 ) )
33 simprl 734 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  A  e.  ( ZZ>= `  2 )
)
34 simprr 735 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  NN )
3512leidd 9624 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )
3635adantl 454 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )
37 jm3.1 27129 . . . . . . 7  |-  ( ( ( ( A Yrm  ( B  +  1 ) )  e.  ( ZZ>= `  2
)  /\  A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )  ->  ( A ^ B )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 ) ) )
3832, 33, 34, 36, 37syl31anc 1188 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A ^ B )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 ) ) )
3938eqeq2d 2453 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  C  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) ) ) )
407adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  B  e.  ZZ )
41 frmx 27014 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
4241fovcl 6204 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  ZZ )  ->  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  e.  NN0 )
4331, 40, 42syl2anc 644 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  NN0 )
4443nn0zd 10404 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  ZZ )
45 eluzelz 10527 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
4645adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  A  e.  ZZ )
4711, 46zsubcld 10411 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) )  -  A )  e.  ZZ )
489fovcl 6204 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  ZZ )  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e.  ZZ )
4931, 40, 48syl2anc 644 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Yrm  B )  e.  ZZ )
5047, 49zmulcld 10412 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) )  e.  ZZ )
5144, 50zsubcld 10411 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  e.  ZZ )
5251adantl 454 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  e.  ZZ )
5332, 33, 34, 36jm3.1lem3 27128 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  e.  NN )
54 simpl 445 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  C  e.  NN0 )
55 divalgmodcl 27096 . . . . . 6  |-  ( ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  e.  ZZ  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  e.  NN  /\  C  e.  NN0 )  ->  ( C  =  ( (
( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  mod  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
5652, 53, 54, 55syl3anc 1185 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
5739, 56bitrd 246 . . . 4  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
58 rmynn0 27060 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  NN0 )  -> 
( A Yrm  ( B  + 
1 ) )  e. 
NN0 )
5924, 58sylan2 462 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  NN0 )
6059adantl 454 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  e.  NN0 )
61 oveq1 6117 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d Yrm  B )  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) )
6261eqeq2d 2453 . . . . . . . . . . 11  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( e  =  ( d Yrm  B )  <->  e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )
63 oveq1 6117 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d Xrm  B )  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B ) )
6463eqeq2d 2453 . . . . . . . . . . . . 13  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( f  =  ( d Xrm  B )  <->  f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B ) ) )
65 oveq2 6118 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( 2  x.  d )  =  ( 2  x.  ( A Yrm  ( B  +  1 ) ) ) )
6665oveq1d 6125 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( 2  x.  d )  x.  A )  =  ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A ) )
6766oveq1d 6125 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  =  ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) ) )
6867oveq1d 6125 . . . . . . . . . . . . . . 15  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  =  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 ) )
6968breq2d 4249 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  <-> 
C  <  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) ) )
70 oveq1 6117 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d  -  A )  =  ( ( A Yrm  ( B  + 
1 ) )  -  A ) )
7170oveq1d 6125 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( d  -  A )  x.  e )  =  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )
7271oveq2d 6126 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( f  -  ( ( d  -  A )  x.  e
) )  =  ( f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  e
) ) )
7372oveq1d 6125 . . . . . . . . . . . . . . 15  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C )  =  ( ( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) )
7468, 73breq12d 4250 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
)  <->  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )
7569, 74anbi12d 693 . . . . . . . . . . . . 13  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )
7664, 75anbi12d 693 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) )  <->  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) )
7776rexbidv 2732 . . . . . . . . . . 11  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) )
7862, 77anbi12d 693 . . . . . . . . . 10  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) )  <->  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
7978rexbidv 2732 . . . . . . . . 9  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8079ceqsrexv 3075 . . . . . . . 8  |-  ( ( A Yrm  ( B  +  1 ) )  e.  NN0  ->  ( E. d  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  E. e  e.  NN0  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8160, 80syl 16 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e. 
NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8222ad2antll 711 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  NN0 )
83 rmynn0 27060 . . . . . . . . 9  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  NN0 )  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e.  NN0 )
8432, 82, 83syl2anc 644 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e. 
NN0 )
85 oveq2 6118 . . . . . . . . . . . . . . 15  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e )  =  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )
8685oveq2d 6126 . . . . . . . . . . . . . 14  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  e
) )  =  ( f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) ) )
8786oveq1d 6125 . . . . . . . . . . . . 13  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C )  =  ( ( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )
8887breq2d 4249 . . . . . . . . . . . 12  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C )  <->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )
8988anbi2d 686 . . . . . . . . . . 11  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( C  <  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
9089anbi2d 686 . . . . . . . . . 10  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )  <->  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9190rexbidv 2732 . . . . . . . . 9  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  ( E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9291ceqsrexv 3075 . . . . . . . 8  |-  ( ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  e.  NN0  ->  ( E. e  e.  NN0  (
e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9384, 92syl 16 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
947ad2antll 711 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  ZZ )
9532, 94, 42syl2anc 644 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  e. 
NN0 )
96 oveq1 6117 . . . . . . . . . . . 12  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  =  ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) ) )
9796oveq1d 6125 . . . . . . . . . . 11  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )
9897breq2d 4249 . . . . . . . . . 10  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C )  <->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )
9998anbi2d 686 . . . . . . . . 9  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( C  <  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10099ceqsrexv 3075 . . . . . . . 8  |-  ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  NN0  ->  ( E. f  e.  NN0  (
f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10195, 100syl 16 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10281, 93, 1013bitrrd 273 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
103 r19.42v 2868 . . . . . . . . . 10  |-  ( E. f  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. f  e. 
NN0  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
104 r19.42v 2868 . . . . . . . . . . 11  |-  ( E. f  e.  NN0  (
e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) )  <->  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )
105104anbi2i 677 . . . . . . . . . 10  |-  ( ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. f  e.  NN0  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )
106103, 105bitri 242 . . . . . . . . 9  |-  ( E. f  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
107106rexbii 2736 . . . . . . . 8  |-  ( E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. e  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
108 r19.42v 2868 . . . . . . . 8  |-  ( E. e  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e. 
NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
109107, 108bitri 242 . . . . . . 7  |-  ( E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  E. e  e.  NN0  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
110109rexbii 2736 . . . . . 6  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
111102, 110syl6bbr 256 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
112 eleq1 2502 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d  e.  ( ZZ>= `  2 )  <->  ( A Yrm  ( B  +  1 ) )  e.  (
ZZ>= `  2 ) ) )
11332, 112syl5ibrcom 215 . . . . . . . . . . 11  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  d  e.  (
ZZ>= `  2 ) ) )
114113imp 420 . . . . . . . . . 10  |-  ( ( ( C  e.  NN0  /\  ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  ->  d  e.  (
ZZ>= `  2 ) )
115 ibar 492 . . . . . . . . . . 11  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( e  =  ( d Yrm  B )  <-> 
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) ) ) )
116 ibar 492 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( f  =  ( d Xrm  B )  <-> 
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) ) ) )
117116anbi1d 687 . . . . . . . . . . 11  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )
118115, 117anbi12d 693 . . . . . . . . . 10  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( (
e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) )  <->  ( (
d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
119114, 118syl 16 . . . . . . . . 9  |-  ( ( ( C  e.  NN0  /\  ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  ->  ( ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) )  <->  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )
120119pm5.32da 624 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
121 ibar 492 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  <-> 
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) ) ) )
122121ad2antrl 710 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  <-> 
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) ) ) )
123122anbi1d 687 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
124120, 123bitrd 246 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
125124rexbidv 2732 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. f  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
1261252rexbidv 2754 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
127111, 126bitrd 246 . . . 4  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
12857, 127bitrd 246 . . 3  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  E. d  e.  NN0  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
129128pm5.32da 624 . 2  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <-> 
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  E. d  e. 
NN0  E. e  e.  NN0  E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
130 r19.42v 2868 . . . 4  |-  ( E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= ` 
2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
1311302rexbii 2738 . . 3  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  E. d  e.  NN0  E. e  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
132 r19.42v 2868 . . . . 5  |-  ( E. e  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
133132rexbii 2736 . . . 4  |-  ( E. d  e.  NN0  E. e  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )  <->  E. d  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
134 r19.42v 2868 . . . 4  |-  ( E. d  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  E. e  e.  NN0  E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
135133, 134bitri 242 . . 3  |-  ( E. d  e.  NN0  E. e  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
136131, 135bitri 242 . 2  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
137129, 136syl6bbr 256 1  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   E.wrex 2712   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   RRcr 9020   1c1 9022    + caddc 9024    x. cmul 9026    < clt 9151    <_ cle 9152    - cmin 9322   NNcn 10031   2c2 10080   NN0cn0 10252   ZZcz 10313   ZZ>=cuz 10519    mod cmo 11281   ^cexp 11413    || cdivides 12883   Xrm crmx 27001   Yrm crmy 27002
This theorem is referenced by:  expdiophlem2  27131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-omul 6758  df-er 6934  df-map 7049  df-pm 7050  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-fi 7445  df-sup 7475  df-oi 7508  df-card 7857  df-acn 7860  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ioo 10951  df-ioc 10952  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-fl 11233  df-mod 11282  df-seq 11355  df-exp 11414  df-fac 11598  df-bc 11625  df-hash 11650  df-shft 11913  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-limsup 12296  df-clim 12313  df-rlim 12314  df-sum 12511  df-ef 12701  df-sin 12703  df-cos 12704  df-pi 12706  df-dvds 12884  df-gcd 13038  df-numer 13158  df-denom 13159  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-hom 13584  df-cco 13585  df-rest 13681  df-topn 13682  df-topgen 13698  df-pt 13699  df-prds 13702  df-xrs 13757  df-0g 13758  df-gsum 13759  df-qtop 13764  df-imas 13765  df-xps 13767  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-mulg 14846  df-cntz 15147  df-cmn 15445  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-fbas 16730  df-fg 16731  df-cnfld 16735  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-lp 17231  df-perf 17232  df-cn 17322  df-cnp 17323  df-haus 17410  df-tx 17625  df-hmeo 17818  df-fil 17909  df-fm 18001  df-flim 18002  df-flf 18003  df-xms 18381  df-ms 18382  df-tms 18383  df-cncf 18939  df-limc 19784  df-dv 19785  df-log 20485  df-squarenn 26942  df-pell1qr 26943  df-pell14qr 26944  df-pell1234qr 26945  df-pellfund 26946  df-rmx 27003  df-rmy 27004
  Copyright terms: Public domain W3C validator