Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Unicode version

Theorem expdiophlem1 27114
Description: Lemma for expdioph 27116. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
Distinct variable groups:    A, d,
e, f    B, d,
e, f    C, d,
e, f

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 9815 . . . . . . . . . . 11  |-  2  e.  RR
21a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  e.  RR )
3 nnre 9753 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  RR )
4 peano2re 8985 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
53, 4syl 15 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  RR )
65adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( B  +  1 )  e.  RR )
7 nnz 10045 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
87peano2zd 10120 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  ZZ )
9 frmy 26999 . . . . . . . . . . . . 13  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
109fovcl 5949 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  ZZ )  -> 
( A Yrm  ( B  + 
1 ) )  e.  ZZ )
118, 10sylan2 460 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  ZZ )
1211zred 10117 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  RR )
13 elnnuz 10264 . . . . . . . . . . . . 13  |-  ( B  e.  NN  <->  B  e.  ( ZZ>= `  1 )
)
14 eluzp1p1 10253 . . . . . . . . . . . . . 14  |-  ( B  e.  ( ZZ>= `  1
)  ->  ( B  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
15 df-2 9804 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
1615fveq2i 5528 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
1714, 16syl6eleqr 2374 . . . . . . . . . . . . 13  |-  ( B  e.  ( ZZ>= `  1
)  ->  ( B  +  1 )  e.  ( ZZ>= `  2 )
)
1813, 17sylbi 187 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  ( ZZ>= `  2
) )
19 eluzle 10240 . . . . . . . . . . . 12  |-  ( ( B  +  1 )  e.  ( ZZ>= `  2
)  ->  2  <_  ( B  +  1 ) )
2018, 19syl 15 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  2  <_  ( B  +  1 ) )
2120adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  <_  ( B  +  1 ) )
22 nnnn0 9972 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  NN0 )
23 peano2nn0 10004 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  ( B  +  1 )  e. 
NN0 )
2422, 23syl 15 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  ( B  +  1 )  e.  NN0 )
25 rmygeid 27051 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  NN0 )  -> 
( B  +  1 )  <_  ( A Yrm  ( B  +  1 ) ) )
2624, 25sylan2 460 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( B  +  1 )  <_  ( A Yrm  ( B  +  1 ) ) )
272, 6, 12, 21, 26letrd 8973 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  2  <_  ( A Yrm  ( B  + 
1 ) ) )
28 2z 10054 . . . . . . . . . 10  |-  2  e.  ZZ
29 eluz 10241 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  ( A Yrm  ( B  + 
1 ) )  e.  ZZ )  ->  (
( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  <->  2  <_  ( A Yrm  ( B  +  1 ) ) ) )
3028, 11, 29sylancr 644 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  <->  2  <_  ( A Yrm  ( B  +  1 ) ) ) )
3127, 30mpbird 223 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  (
ZZ>= `  2 ) )
3231adantl 452 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  e.  ( ZZ>= ` 
2 ) )
33 simprl 732 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  A  e.  ( ZZ>= `  2 )
)
34 simprr 733 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  NN )
3512leidd 9339 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )
3635adantl 452 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )
37 jm3.1 27113 . . . . . . 7  |-  ( ( ( ( A Yrm  ( B  +  1 ) )  e.  ( ZZ>= `  2
)  /\  A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  ( A Yrm  ( B  +  1 ) )  <_  ( A Yrm  ( B  +  1 ) ) )  ->  ( A ^ B )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 ) ) )
3832, 33, 34, 36, 37syl31anc 1185 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A ^ B )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 ) ) )
3938eqeq2d 2294 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  C  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) ) ) )
407adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  B  e.  ZZ )
41 frmx 26998 . . . . . . . . . . 11  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
4241fovcl 5949 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  ZZ )  ->  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  e.  NN0 )
4331, 40, 42syl2anc 642 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  NN0 )
4443nn0zd 10115 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  ZZ )
45 eluzelz 10238 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
4645adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  A  e.  ZZ )
4711, 46zsubcld 10122 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) )  -  A )  e.  ZZ )
489fovcl 5949 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  ZZ )  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e.  ZZ )
4931, 40, 48syl2anc 642 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( A Yrm  ( B  + 
1 ) ) Yrm  B )  e.  ZZ )
5047, 49zmulcld 10123 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) )  e.  ZZ )
5144, 50zsubcld 10122 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  (
( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  e.  ZZ )
5251adantl 452 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  e.  ZZ )
5332, 33, 34, 36jm3.1lem3 27112 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  e.  NN )
54 simpl 443 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  C  e.  NN0 )
55 divalgmodcl 27080 . . . . . 6  |-  ( ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  e.  ZZ  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  e.  NN  /\  C  e.  NN0 )  ->  ( C  =  ( (
( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  mod  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
5652, 53, 54, 55syl3anc 1182 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  mod  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
5739, 56bitrd 244 . . . 4  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
58 rmynn0 27044 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( B  +  1 )  e.  NN0 )  -> 
( A Yrm  ( B  + 
1 ) )  e. 
NN0 )
5924, 58sylan2 460 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  ->  ( A Yrm  ( B  +  1 ) )  e.  NN0 )
6059adantl 452 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( A Yrm  ( B  +  1 ) )  e.  NN0 )
61 oveq1 5865 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d Yrm  B )  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) )
6261eqeq2d 2294 . . . . . . . . . . 11  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( e  =  ( d Yrm  B )  <->  e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )
63 oveq1 5865 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d Xrm  B )  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B ) )
6463eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( f  =  ( d Xrm  B )  <->  f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B ) ) )
65 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( 2  x.  d )  =  ( 2  x.  ( A Yrm  ( B  +  1 ) ) ) )
6665oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( 2  x.  d )  x.  A )  =  ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A ) )
6766oveq1d 5873 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  =  ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) ) )
6867oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  =  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 ) )
6968breq2d 4035 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  <-> 
C  <  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) ) )
70 oveq1 5865 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d  -  A )  =  ( ( A Yrm  ( B  + 
1 ) )  -  A ) )
7170oveq1d 5873 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( d  -  A )  x.  e )  =  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )
7271oveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( f  -  ( ( d  -  A )  x.  e
) )  =  ( f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  e
) ) )
7372oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C )  =  ( ( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) )
7468, 73breq12d 4036 . . . . . . . . . . . . . 14  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
)  <->  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )
7569, 74anbi12d 691 . . . . . . . . . . . . 13  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )
7664, 75anbi12d 691 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) )  <->  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) )
7776rexbidv 2564 . . . . . . . . . . 11  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) )
7862, 77anbi12d 691 . . . . . . . . . 10  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) )  <->  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
7978rexbidv 2564 . . . . . . . . 9  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8079ceqsrexv 2901 . . . . . . . 8  |-  ( ( A Yrm  ( B  +  1 ) )  e.  NN0  ->  ( E. d  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  E. e  e.  NN0  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8160, 80syl 15 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e. 
NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) ) ) )
8222ad2antll 709 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  NN0 )
83 rmynn0 27044 . . . . . . . . 9  |-  ( ( ( A Yrm  ( B  + 
1 ) )  e.  ( ZZ>= `  2 )  /\  B  e.  NN0 )  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e.  NN0 )
8432, 82, 83syl2anc 642 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  e. 
NN0 )
85 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e )  =  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )
8685oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  e
) )  =  ( f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) ) )
8786oveq1d 5873 . . . . . . . . . . . . 13  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C )  =  ( ( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )
8887breq2d 4035 . . . . . . . . . . . 12  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C )  <->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )
8988anbi2d 684 . . . . . . . . . . 11  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( C  <  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
9089anbi2d 684 . . . . . . . . . 10  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  (
( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )  <->  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9190rexbidv 2564 . . . . . . . . 9  |-  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  ->  ( E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9291ceqsrexv 2901 . . . . . . . 8  |-  ( ( ( A Yrm  ( B  + 
1 ) ) Yrm  B )  e.  NN0  ->  ( E. e  e.  NN0  (
e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
9384, 92syl 15 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. e  e.  NN0  ( e  =  ( ( A Yrm  ( B  +  1 ) ) Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  e ) )  -  C ) ) ) )  <->  E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) ) )
947ad2antll 709 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  B  e.  ZZ )
9532, 94, 42syl2anc 642 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  e. 
NN0 )
96 oveq1 5865 . . . . . . . . . . . 12  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
f  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) )  =  ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  + 
1 ) )  -  A )  x.  (
( A Yrm  ( B  + 
1 ) ) Yrm  B ) ) ) )
9796oveq1d 5873 . . . . . . . . . . 11  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C )  =  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )
9897breq2d 4035 . . . . . . . . . 10  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C )  <->  ( (
( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A
)  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )
9998anbi2d 684 . . . . . . . . 9  |-  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  ->  (
( C  <  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10099ceqsrexv 2901 . . . . . . . 8  |-  ( ( ( A Yrm  ( B  + 
1 ) ) Xrm  B )  e.  NN0  ->  ( E. f  e.  NN0  (
f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  + 
1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10195, 100syl 15 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. f  e.  NN0  ( f  =  ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) )  <->  ( C  < 
( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) ) ) )
10281, 93, 1013bitrrd 271 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
103 r19.42v 2694 . . . . . . . . . 10  |-  ( E. f  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. f  e. 
NN0  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
104 r19.42v 2694 . . . . . . . . . . 11  |-  ( E. f  e.  NN0  (
e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) )  <->  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )
105104anbi2i 675 . . . . . . . . . 10  |-  ( ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. f  e.  NN0  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )
106103, 105bitri 240 . . . . . . . . 9  |-  ( E. f  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
107106rexbii 2568 . . . . . . . 8  |-  ( E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. e  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
108 r19.42v 2694 . . . . . . . 8  |-  ( E. e  e.  NN0  (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e. 
NN0  ( e  =  ( d Yrm  B )  /\  E. f  e.  NN0  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
109107, 108bitri 240 . . . . . . 7  |-  ( E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  E. e  e.  NN0  (
e  =  ( d Yrm  B )  /\  E. f  e.  NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
110109rexbii 2568 . . . . . 6  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. d  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  E. e  e.  NN0  ( e  =  ( d Yrm  B )  /\  E. f  e. 
NN0  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )
111102, 110syl6bbr 254 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
112 eleq1 2343 . . . . . . . . . . . 12  |-  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  ( d  e.  ( ZZ>= `  2 )  <->  ( A Yrm  ( B  +  1 ) )  e.  (
ZZ>= `  2 ) ) )
11332, 112syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  ->  d  e.  (
ZZ>= `  2 ) ) )
114113imp 418 . . . . . . . . . 10  |-  ( ( ( C  e.  NN0  /\  ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  ->  d  e.  (
ZZ>= `  2 ) )
115 ibar 490 . . . . . . . . . . 11  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( e  =  ( d Yrm  B )  <-> 
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) ) ) )
116 ibar 490 . . . . . . . . . . . 12  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( f  =  ( d Xrm  B )  <-> 
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) ) ) )
117116anbi1d 685 . . . . . . . . . . 11  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) )  <->  ( (
d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )
118115, 117anbi12d 691 . . . . . . . . . 10  |-  ( d  e.  ( ZZ>= `  2
)  ->  ( (
e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) )  <->  ( (
d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )
119114, 118syl 15 . . . . . . . . 9  |-  ( ( ( C  e.  NN0  /\  ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  ->  ( ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) )  <->  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )
120119pm5.32da 622 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
121 ibar 490 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  <-> 
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) ) ) )
122121ad2antrl 708 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( d  =  ( A Yrm  ( B  +  1 ) )  <-> 
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) ) ) )
123122anbi1d 685 . . . . . . . 8  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
124120, 123bitrd 244 . . . . . . 7  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( (
d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
125124rexbidv 2564 . . . . . 6  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. f  e.  NN0  ( d  =  ( A Yrm  ( B  +  1 ) )  /\  ( e  =  ( d Yrm  B )  /\  ( f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
1261252rexbidv 2586 . . . . 5  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( d  =  ( A Yrm  ( B  + 
1 ) )  /\  ( e  =  ( d Yrm  B )  /\  (
f  =  ( d Xrm  B )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
127111, 126bitrd 244 . . . 4  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( ( C  <  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  ( A Yrm  ( B  +  1 ) ) )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  ||  ( ( ( ( A Yrm  ( B  +  1 ) ) Xrm  B )  -  ( ( ( A Yrm  ( B  +  1 ) )  -  A )  x.  ( ( A Yrm  ( B  +  1 ) ) Yrm  B ) ) )  -  C ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
12857, 127bitrd 244 . . 3  |-  ( ( C  e.  NN0  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  NN )
)  ->  ( C  =  ( A ^ B )  <->  E. d  e.  NN0  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
129128pm5.32da 622 . 2  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <-> 
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  E. d  e. 
NN0  E. e  e.  NN0  E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
130 r19.42v 2694 . . . 4  |-  ( E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= ` 
2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= ` 
2 )  /\  f  =  ( d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) )
1311302rexbii 2570 . . 3  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  E. d  e.  NN0  E. e  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
132 r19.42v 2694 . . . . 5  |-  ( E. e  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
133132rexbii 2568 . . . 4  |-  ( E. d  e.  NN0  E. e  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )  <->  E. d  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  NN )  /\  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
134 r19.42v 2694 . . . 4  |-  ( E. d  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  E. e  e.  NN0  E. f  e.  NN0  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
135133, 134bitri 240 . . 3  |-  ( E. d  e.  NN0  E. e  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e. 
NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  e  =  (
d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2 )  /\  f  =  (
d Xrm  B ) )  /\  ( C  <  ( ( ( ( 2  x.  d )  x.  A
)  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 ) 
||  ( ( f  -  ( ( d  -  A )  x.  e ) )  -  C ) ) ) ) ) ) )
136131, 135bitri 240 . 2  |-  ( E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) )  <->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  NN )  /\  E. d  e.  NN0  E. e  e.  NN0  E. f  e. 
NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  d  =  ( A Yrm  ( B  + 
1 ) ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  e  =  ( d Yrm  B ) )  /\  ( ( d  e.  ( ZZ>= `  2
)  /\  f  =  ( d Xrm  B ) )  /\  ( C  < 
( ( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  ||  (
( f  -  (
( d  -  A
)  x.  e ) )  -  C ) ) ) ) ) ) )
137129, 136syl6bbr 254 1  |-  ( C  e.  NN0  ->  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  NN )  /\  C  =  ( A ^ B ) )  <->  E. d  e.  NN0  E. e  e.  NN0  E. f  e.  NN0  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  NN )  /\  (
( A  e.  (
ZZ>= `  2 )  /\  d  =  ( A Yrm  ( B  +  1 ) ) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  e  =  ( d Yrm  B
) )  /\  (
( d  e.  (
ZZ>= `  2 )  /\  f  =  ( d Xrm  B
) )  /\  ( C  <  ( ( ( ( 2  x.  d
)  x.  A )  -  ( A ^
2 ) )  - 
1 )  /\  (
( ( ( 2  x.  d )  x.  A )  -  ( A ^ 2 ) )  -  1 )  ||  ( ( f  -  ( ( d  -  A )  x.  e
) )  -  C
) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230    mod cmo 10973   ^cexp 11104    || cdivides 12531   Xrm crmx 26985   Yrm crmy 26986
This theorem is referenced by:  expdiophlem2  27115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930  df-rmx 26987  df-rmy 26988
  Copyright terms: Public domain W3C validator