MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Structured version   Unicode version

Theorem expge0 11416
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ N
) )

Proof of Theorem expge0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4216 . . . . 5  |-  ( z  =  A  ->  (
0  <_  z  <->  0  <_  A ) )
21elrab 3092 . . . 4  |-  ( A  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( A  e.  RR  /\  0  <_  A ) )
3 ssrab2 3428 . . . . . . 7  |-  { z  e.  RR  |  0  <_  z }  C_  RR
4 ax-resscn 9047 . . . . . . 7  |-  RR  C_  CC
53, 4sstri 3357 . . . . . 6  |-  { z  e.  RR  |  0  <_  z }  C_  CC
6 breq2 4216 . . . . . . . 8  |-  ( z  =  x  ->  (
0  <_  z  <->  0  <_  x ) )
76elrab 3092 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( x  e.  RR  /\  0  <_  x ) )
8 breq2 4216 . . . . . . . 8  |-  ( z  =  y  ->  (
0  <_  z  <->  0  <_  y ) )
98elrab 3092 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( y  e.  RR  /\  0  <_ 
y ) )
10 remulcl 9075 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1110ad2ant2r 728 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( x  x.  y )  e.  RR )
12 mulge0 9545 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  0  <_  ( x  x.  y ) )
13 breq2 4216 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
0  <_  z  <->  0  <_  ( x  x.  y ) ) )
1413elrab 3092 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( (
x  x.  y )  e.  RR  /\  0  <_  ( x  x.  y
) ) )
1511, 12, 14sylanbrc 646 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( x  x.  y )  e.  {
z  e.  RR  | 
0  <_  z }
)
167, 9, 15syl2anb 466 . . . . . 6  |-  ( ( x  e.  { z  e.  RR  |  0  <_  z }  /\  y  e.  { z  e.  RR  |  0  <_ 
z } )  -> 
( x  x.  y
)  e.  { z  e.  RR  |  0  <_  z } )
17 1re 9090 . . . . . . 7  |-  1  e.  RR
18 0le1 9551 . . . . . . 7  |-  0  <_  1
19 breq2 4216 . . . . . . . 8  |-  ( z  =  1  ->  (
0  <_  z  <->  0  <_  1 ) )
2019elrab 3092 . . . . . . 7  |-  ( 1  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( 1  e.  RR  /\  0  <_  1 ) )
2117, 18, 20mpbir2an 887 . . . . . 6  |-  1  e.  { z  e.  RR  |  0  <_  z }
225, 16, 21expcllem 11392 . . . . 5  |-  ( ( A  e.  { z  e.  RR  |  0  <_  z }  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  { z  e.  RR  |  0  <_  z } )
23 breq2 4216 . . . . . . 7  |-  ( z  =  ( A ^ N )  ->  (
0  <_  z  <->  0  <_  ( A ^ N ) ) )
2423elrab 3092 . . . . . 6  |-  ( ( A ^ N )  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( ( A ^ N )  e.  RR  /\  0  <_ 
( A ^ N
) ) )
2524simprbi 451 . . . . 5  |-  ( ( A ^ N )  e.  { z  e.  RR  |  0  <_ 
z }  ->  0  <_  ( A ^ N
) )
2622, 25syl 16 . . . 4  |-  ( ( A  e.  { z  e.  RR  |  0  <_  z }  /\  N  e.  NN0 )  -> 
0  <_  ( A ^ N ) )
272, 26sylanbr 460 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  N  e.  NN0 )  ->  0  <_  ( A ^ N ) )
28273impa 1148 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  N  e.  NN0 )  ->  0  <_  ( A ^ N
) )
29283com23 1159 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   {crab 2709   class class class wbr 4212  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    <_ cle 9121   NN0cn0 10221   ^cexp 11382
This theorem is referenced by:  leexp2r  11437  leexp1a  11438  expge0d  11541  rpnnen2lem4  12817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-seq 11324  df-exp 11383
  Copyright terms: Public domain W3C validator