MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Unicode version

Theorem expge0 11138
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ N
) )

Proof of Theorem expge0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4027 . . . . 5  |-  ( z  =  A  ->  (
0  <_  z  <->  0  <_  A ) )
21elrab 2923 . . . 4  |-  ( A  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( A  e.  RR  /\  0  <_  A ) )
3 ssrab2 3258 . . . . . . 7  |-  { z  e.  RR  |  0  <_  z }  C_  RR
4 ax-resscn 8794 . . . . . . 7  |-  RR  C_  CC
53, 4sstri 3188 . . . . . 6  |-  { z  e.  RR  |  0  <_  z }  C_  CC
6 breq2 4027 . . . . . . . 8  |-  ( z  =  x  ->  (
0  <_  z  <->  0  <_  x ) )
76elrab 2923 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( x  e.  RR  /\  0  <_  x ) )
8 breq2 4027 . . . . . . . 8  |-  ( z  =  y  ->  (
0  <_  z  <->  0  <_  y ) )
98elrab 2923 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( y  e.  RR  /\  0  <_ 
y ) )
10 remulcl 8822 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1110ad2ant2r 727 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( x  x.  y )  e.  RR )
12 mulge0 9291 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  0  <_  ( x  x.  y ) )
13 breq2 4027 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
0  <_  z  <->  0  <_  ( x  x.  y ) ) )
1413elrab 2923 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( (
x  x.  y )  e.  RR  /\  0  <_  ( x  x.  y
) ) )
1511, 12, 14sylanbrc 645 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( x  x.  y )  e.  {
z  e.  RR  | 
0  <_  z }
)
167, 9, 15syl2anb 465 . . . . . 6  |-  ( ( x  e.  { z  e.  RR  |  0  <_  z }  /\  y  e.  { z  e.  RR  |  0  <_ 
z } )  -> 
( x  x.  y
)  e.  { z  e.  RR  |  0  <_  z } )
17 1re 8837 . . . . . . 7  |-  1  e.  RR
18 0le1 9297 . . . . . . 7  |-  0  <_  1
19 breq2 4027 . . . . . . . 8  |-  ( z  =  1  ->  (
0  <_  z  <->  0  <_  1 ) )
2019elrab 2923 . . . . . . 7  |-  ( 1  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( 1  e.  RR  /\  0  <_  1 ) )
2117, 18, 20mpbir2an 886 . . . . . 6  |-  1  e.  { z  e.  RR  |  0  <_  z }
225, 16, 21expcllem 11114 . . . . 5  |-  ( ( A  e.  { z  e.  RR  |  0  <_  z }  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  { z  e.  RR  |  0  <_  z } )
23 breq2 4027 . . . . . . 7  |-  ( z  =  ( A ^ N )  ->  (
0  <_  z  <->  0  <_  ( A ^ N ) ) )
2423elrab 2923 . . . . . 6  |-  ( ( A ^ N )  e.  { z  e.  RR  |  0  <_ 
z }  <->  ( ( A ^ N )  e.  RR  /\  0  <_ 
( A ^ N
) ) )
2524simprbi 450 . . . . 5  |-  ( ( A ^ N )  e.  { z  e.  RR  |  0  <_ 
z }  ->  0  <_  ( A ^ N
) )
2622, 25syl 15 . . . 4  |-  ( ( A  e.  { z  e.  RR  |  0  <_  z }  /\  N  e.  NN0 )  -> 
0  <_  ( A ^ N ) )
272, 26sylanbr 459 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  N  e.  NN0 )  ->  0  <_  ( A ^ N ) )
28273impa 1146 . 2  |-  ( ( A  e.  RR  /\  0  <_  A  /\  N  e.  NN0 )  ->  0  <_  ( A ^ N
) )
29283com23 1157 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   {crab 2547   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    <_ cle 8868   NN0cn0 9965   ^cexp 11104
This theorem is referenced by:  leexp2r  11159  leexp1a  11160  expge0d  11263  rpnnen2lem4  12496  stoweidlem1  27750  stoweidlem3  27752  stoweidlem7  27756  stoweidlem45  27794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator