MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulz Unicode version

Theorem expmulz 11195
Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
expmulz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )

Proof of Theorem expmulz
StepHypRef Expression
1 elznn0nn 10084 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 10084 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expmul 11194 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
433expia 1153 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
54adantlr 695 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( N  e. 
NN0  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
6 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
76recnd 8906 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
8 simp3 957 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
98nn0cnd 10067 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
107, 9mulneg1d 9277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  =  -u ( M  x.  N ) )
1110oveq2d 5916 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( -u M  x.  N ) )  =  ( A ^ -u ( M  x.  N )
) )
12 simp1l 979 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
13 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
1413nnnn0d 10065 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
15 expmul 11194 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M
) ^ N ) )
1612, 14, 8, 15syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M ) ^ N
) )
1711, 16eqtr3d 2350 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  x.  N ) )  =  ( ( A ^ -u M ) ^ N ) )
1817oveq2d 5916 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ -u M ) ^ N ) ) )
19 expcl 11168 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
2012, 14, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
21 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  =/=  0 )
2213nnzd 10163 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
23 expne0i 11181 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M )  =/=  0 )
2412, 21, 22, 23syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  =/=  0 )
258nn0zd 10162 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
26 exprec 11190 . . . . . . . . . 10  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  N  e.  ZZ )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
2720, 24, 25, 26syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( A ^ -u M ) ^ N
) ) )
2818, 27eqtr4d 2351 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
297, 9mulcld 8900 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  x.  N )  e.  CC )
3014, 8nn0mulcld 10070 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
3110, 30eqeltrrd 2391 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  x.  N )  e.  NN0 )
32 expneg2 11159 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( M  x.  N
)  e.  CC  /\  -u ( M  x.  N
)  e.  NN0 )  ->  ( A ^ ( M  x.  N )
)  =  ( 1  /  ( A ^ -u ( M  x.  N
) ) ) )
3312, 29, 31, 32syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
34 expneg2 11159 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3512, 7, 14, 34syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3635oveq1d 5915 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  (
( A ^ M
) ^ N )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
3728, 33, 363eqtr4d 2358 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
38373expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
395, 38jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( N  e. 
NN0  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
40 simp2 956 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  NN0 )
4140nn0cnd 10067 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
42 simp3l 983 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4342recnd 8906 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4441, 43mulneg2d 9278 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  -u N )  =  -u ( M  x.  N ) )
4544oveq2d 5916 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  -u N ) )  =  ( A ^ -u ( M  x.  N )
) )
46 simp1l 979 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
47 simp3r 984 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4847nnnn0d 10065 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
49 expmul 11194 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5046, 40, 48, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5145, 50eqtr3d 2350 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u ( M  x.  N ) )  =  ( ( A ^ M ) ^ -u N ) )
5251oveq2d 5916 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
5341, 43mulcld 8900 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  N )  e.  CC )
5440, 48nn0mulcld 10070 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  x.  -u N )  e.  NN0 )
5544, 54eqeltrrd 2391 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  x.  N )  e.  NN0 )
5646, 53, 55, 32syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
57 expcl 11168 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
5846, 40, 57syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ M )  e.  CC )
59 expneg2 11159 . . . . . . . . 9  |-  ( ( ( A ^ M
)  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6058, 43, 48, 59syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6152, 56, 603eqtr4d 2358 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
62613expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  NN0 )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
63 simp1l 979 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
64 simp2l 981 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
6564recnd 8906 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
66 simp2r 982 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
6766nnnn0d 10065 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
6863, 65, 67, 34syl3anc 1182 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
6968oveq1d 5915 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
7063, 67, 19syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
71 simp1r 980 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
7266nnzd 10163 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
7363, 71, 72, 23syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  =/=  0 )
7470, 73reccld 9574 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) )  e.  CC )
75 simp3l 983 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
7675recnd 8906 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
77 simp3r 984 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
7877nnnn0d 10065 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
79 expneg2 11159 . . . . . . . . 9  |-  ( ( ( 1  /  ( A ^ -u M ) )  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
) ) )
8074, 76, 78, 79syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ N
)  =  ( 1  /  ( ( 1  /  ( A ^ -u M ) ) ^ -u N ) ) )
8177nnzd 10163 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
82 exprec 11190 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  -u N  e.  ZZ )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ -u N )  =  ( 1  /  ( ( A ^ -u M
) ^ -u N
) ) )
8370, 73, 81, 82syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8483oveq2d 5916 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( 1  /  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) ) )
85 expcl 11168 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  -u N  e.  NN0 )  ->  ( ( A ^ -u M ) ^ -u N
)  e.  CC )
8670, 78, 85syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  e.  CC )
87 expne0i 11181 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
)  =/=  0  /\  -u N  e.  ZZ )  ->  ( ( A ^ -u M ) ^ -u N )  =/=  0 )
8870, 73, 81, 87syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =/=  0 )
8986, 88recrecd 9578 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
1  /  ( ( A ^ -u M
) ^ -u N
) ) )  =  ( ( A ^ -u M ) ^ -u N
) )
90 expmul 11194 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9163, 67, 78, 90syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9265, 76mul2negd 9279 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  x.  -u N
)  =  ( M  x.  N ) )
9392oveq2d 5916 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9491, 93eqtr3d 2350 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =  ( A ^ ( M  x.  N ) ) )
9584, 89, 943eqtrd 2352 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9669, 80, 953eqtrrd 2353 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
97963expia 1153 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
9862, 97jaodan 760 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
9939, 98jaod 369 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e. 
NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1002, 99sylan2b 461 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1011, 100syl5bi 208 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
102101impr 602 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479  (class class class)co 5900   CCcc 8780   RRcr 8781   0cc0 8782   1c1 8783    x. cmul 8787   -ucneg 9083    / cdiv 9468   NNcn 9791   NN0cn0 10012   ZZcz 10071   ^cexp 11151
This theorem is referenced by:  iexpcyc  11254  iseraltlem2  12202  iseraltlem3  12203  dvexp3  19378  cxpeq  20150  atantayl2  20287  basellem3  20373  lgseisenlem1  20641  lgseisenlem4  20644  lgsquadlem1  20646  lgsquad2lem1  20650  m1lgs  20654  jm2.21  26235
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-n0 10013  df-z 10072  df-uz 10278  df-seq 11094  df-exp 11152
  Copyright terms: Public domain W3C validator