MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expneg2 Structured version   Unicode version

Theorem expneg2 11382
Description: Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expneg2  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )

Proof of Theorem expneg2
StepHypRef Expression
1 negneg 9343 . . . 4  |-  ( N  e.  CC  ->  -u -u N  =  N )
213ad2ant2 979 . . 3  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  -u -u N  =  N )
32oveq2d 6089 . 2  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u -u N
)  =  ( A ^ N ) )
4 expneg 11381 . . 3  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u -u N
)  =  ( 1  /  ( A ^ -u N ) ) )
543adant2 976 . 2  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u -u N
)  =  ( 1  /  ( A ^ -u N ) ) )
63, 5eqtr3d 2469 1  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725  (class class class)co 6073   CCcc 8980   1c1 8983   -ucneg 9284    / cdiv 9669   NN0cn0 10213   ^cexp 11374
This theorem is referenced by:  expcl2lem  11385  expnegz  11406  mulexpz  11412  expaddzlem  11415  expaddz  11416  expmulz  11418  absexpz  12102  pcid  13238  dvexp3  19854  cxpmul2z  20574  pell14qrexpcl  26911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-seq 11316  df-exp 11375
  Copyright terms: Public domain W3C validator