MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Unicode version

Theorem expval 11376
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) ,  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ) ) ) )

Proof of Theorem expval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  y  =  N )
21eqeq1d 2443 . . 3  |-  ( ( x  =  A  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
31breq2d 4216 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  ( 0  <  y  <->  0  <  N ) )
4 simpl 444 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  N )  ->  x  =  A )
54sneqd 3819 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  N )  ->  { x }  =  { A } )
65xpeq2d 4894 . . . . . 6  |-  ( ( x  =  A  /\  y  =  N )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { A } ) )
76seqeq3d 11323 . . . . 5  |-  ( ( x  =  A  /\  y  =  N )  ->  seq  1 (  x.  ,  ( NN  X.  { x } ) )  =  seq  1
(  x.  ,  ( NN  X.  { A } ) ) )
87, 1fveq12d 5726 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
)  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
91negeqd 9292 . . . . . 6  |-  ( ( x  =  A  /\  y  =  N )  -> 
-u y  =  -u N )
107, 9fveq12d 5726 . . . . 5  |-  ( ( x  =  A  /\  y  =  N )  ->  (  seq  1 (  x.  ,  ( NN 
X.  { x }
) ) `  -u y
)  =  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) )
1110oveq2d 6089 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  ( 1  /  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) )  =  ( 1  / 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u N
) ) )
123, 8, 11ifbieq12d 3753 . . 3  |-  ( ( x  =  A  /\  y  =  N )  ->  if ( 0  < 
y ,  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 y ) ,  ( 1  /  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) )  =  if ( 0  <  N , 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) ,  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ) ) )
132, 12ifbieq2d 3751 . 2  |-  ( ( x  =  A  /\  y  =  N )  ->  if ( y  =  0 ,  1 ,  if ( 0  < 
y ,  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 y ) ,  ( 1  /  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
14 df-exp 11375 . 2  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq  1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq  1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) ) )
15 1ex 9078 . . 3  |-  1  e.  _V
16 fvex 5734 . . . 4  |-  (  seq  1 (  x.  , 
( NN  X.  { A } ) ) `  N )  e.  _V
17 ovex 6098 . . . 4  |-  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) )  e. 
_V
1816, 17ifex 3789 . . 3  |-  if ( 0  <  N , 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) ,  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ) )  e.  _V
1915, 18ifex 3789 . 2  |-  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) ,  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  _V
2013, 14, 19ovmpt2a 6196 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq  1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
) ,  ( 1  /  (  seq  1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ifcif 3731   {csn 3806   class class class wbr 4204    X. cxp 4868   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112   -ucneg 9284    / cdiv 9669   NNcn 9992   ZZcz 10274    seq cseq 11315   ^cexp 11374
This theorem is referenced by:  expnnval  11377  exp0  11378  expneg  11381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-1cn 9040
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-neg 9286  df-seq 11316  df-exp 11375
  Copyright terms: Public domain W3C validator