MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exrot3 Unicode version

Theorem exrot3 1749
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 1748 . 2  |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
2 excom 1746 . 2  |-  ( E. z E. y E. x ph  <->  E. y E. z E. x ph )
31, 2bitri 240 1  |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   E.wex 1546
This theorem is referenced by:  opabn0  4398  dmoprab  6054  rnoprab  6056  xpassen  7099  brimg  25217  ellines  25517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-7 1739
This theorem depends on definitions:  df-bi 177  df-ex 1547
  Copyright terms: Public domain W3C validator