Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsbOLD Structured version   Unicode version

Theorem exsbOLD 2207
 Description: An equivalent expression for existence. Obsolete as of 19-Jun-2017. (Contributed by NM, 2-Feb-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
exsbOLD
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem exsbOLD
StepHypRef Expression
1 nfv 1629 . . 3
21sb8e 2168 . 2
3 sb6 2174 . . 3
43exbii 1592 . 2
52, 4bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wex 1550   wceq 1652  wsb 1658 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator