MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exss Structured version   Unicode version

Theorem exss 4418
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
exss  |-  ( E. x  e.  A  ph  ->  E. y ( y 
C_  A  /\  E. x  e.  y  ph ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem exss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-rab 2706 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
21neeq1i 2608 . . 3  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  { x  |  ( x  e.  A  /\  ph ) }  =/=  (/) )
3 rabn0 3639 . . 3  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
4 n0 3629 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  =/=  (/)  <->  E. z 
z  e.  { x  |  ( x  e.  A  /\  ph ) } )
52, 3, 43bitr3i 267 . 2  |-  ( E. x  e.  A  ph  <->  E. z  z  e.  {
x  |  ( x  e.  A  /\  ph ) } )
6 vex 2951 . . . . . 6  |-  z  e. 
_V
76snss 3918 . . . . 5  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  { z }  C_  { x  |  ( x  e.  A  /\  ph ) } )
8 ssab2 3419 . . . . . 6  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
9 sstr2 3347 . . . . . 6  |-  ( { z }  C_  { x  |  ( x  e.  A  /\  ph ) }  ->  ( { x  |  ( x  e.  A  /\  ph ) }  C_  A  ->  { z }  C_  A )
)
108, 9mpi 17 . . . . 5  |-  ( { z }  C_  { x  |  ( x  e.  A  /\  ph ) }  ->  { z } 
C_  A )
117, 10sylbi 188 . . . 4  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  { z }  C_  A
)
12 simpr 448 . . . . . . . 8  |-  ( ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph )  ->  [ z  /  x ] ph )
13 equsb1 2113 . . . . . . . . 9  |-  [ z  /  x ] x  =  z
14 elsn 3821 . . . . . . . . . 10  |-  ( x  e.  { z }  <-> 
x  =  z )
1514sbbii 1665 . . . . . . . . 9  |-  ( [ z  /  x ]
x  e.  { z }  <->  [ z  /  x ] x  =  z
)
1613, 15mpbir 201 . . . . . . . 8  |-  [ z  /  x ] x  e.  { z }
1712, 16jctil 524 . . . . . . 7  |-  ( ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph )  ->  ( [ z  /  x ] x  e.  { z }  /\  [ z  /  x ] ph ) )
18 df-clab 2422 . . . . . . . 8  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  [ z  /  x ] ( x  e.  A  /\  ph ) )
19 sban 2143 . . . . . . . 8  |-  ( [ z  /  x ]
( x  e.  A  /\  ph )  <->  ( [
z  /  x ]
x  e.  A  /\  [ z  /  x ] ph ) )
2018, 19bitri 241 . . . . . . 7  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  ( [
z  /  x ]
x  e.  A  /\  [ z  /  x ] ph ) )
21 df-rab 2706 . . . . . . . . 9  |-  { x  e.  { z }  |  ph }  =  { x  |  ( x  e. 
{ z }  /\  ph ) }
2221eleq2i 2499 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ z }  |  ph }  <->  z  e.  {
x  |  ( x  e.  { z }  /\  ph ) } )
23 df-clab 2422 . . . . . . . . 9  |-  ( z  e.  { x  |  ( x  e.  {
z }  /\  ph ) }  <->  [ z  /  x ] ( x  e. 
{ z }  /\  ph ) )
24 sban 2143 . . . . . . . . 9  |-  ( [ z  /  x ]
( x  e.  {
z }  /\  ph ) 
<->  ( [ z  /  x ] x  e.  {
z }  /\  [
z  /  x ] ph ) )
2523, 24bitri 241 . . . . . . . 8  |-  ( z  e.  { x  |  ( x  e.  {
z }  /\  ph ) }  <->  ( [ z  /  x ] x  e.  { z }  /\  [ z  /  x ] ph ) )
2622, 25bitri 241 . . . . . . 7  |-  ( z  e.  { x  e. 
{ z }  |  ph }  <->  ( [ z  /  x ] x  e.  { z }  /\  [ z  /  x ] ph ) )
2717, 20, 263imtr4i 258 . . . . . 6  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  z  e.  { x  e. 
{ z }  |  ph } )
28 ne0i 3626 . . . . . 6  |-  ( z  e.  { x  e. 
{ z }  |  ph }  ->  { x  e.  { z }  |  ph }  =/=  (/) )
2927, 28syl 16 . . . . 5  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  { x  e.  { z }  |  ph }  =/=  (/) )
30 rabn0 3639 . . . . 5  |-  ( { x  e.  { z }  |  ph }  =/=  (/)  <->  E. x  e.  {
z } ph )
3129, 30sylib 189 . . . 4  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  E. x  e.  { z } ph )
32 snex 4397 . . . . 5  |-  { z }  e.  _V
33 sseq1 3361 . . . . . 6  |-  ( y  =  { z }  ->  ( y  C_  A 
<->  { z }  C_  A ) )
34 rexeq 2897 . . . . . 6  |-  ( y  =  { z }  ->  ( E. x  e.  y  ph  <->  E. x  e.  { z } ph ) )
3533, 34anbi12d 692 . . . . 5  |-  ( y  =  { z }  ->  ( ( y 
C_  A  /\  E. x  e.  y  ph ) 
<->  ( { z } 
C_  A  /\  E. x  e.  { z } ph ) ) )
3632, 35spcev 3035 . . . 4  |-  ( ( { z }  C_  A  /\  E. x  e. 
{ z } ph )  ->  E. y ( y 
C_  A  /\  E. x  e.  y  ph ) )
3711, 31, 36syl2anc 643 . . 3  |-  ( z  e.  { x  |  ( x  e.  A  /\  ph ) }  ->  E. y ( y  C_  A  /\  E. x  e.  y  ph ) )
3837exlimiv 1644 . 2  |-  ( E. z  z  e.  {
x  |  ( x  e.  A  /\  ph ) }  ->  E. y
( y  C_  A  /\  E. x  e.  y 
ph ) )
395, 38sylbi 188 1  |-  ( E. x  e.  A  ph  ->  E. y ( y 
C_  A  /\  E. x  e.  y  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652   [wsb 1658    e. wcel 1725   {cab 2421    =/= wne 2598   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   {csn 3806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-sn 3812  df-pr 3813
  Copyright terms: Public domain W3C validator