MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnvcnv Unicode version

Theorem f1cnvcnv 5445
Description: Two ways to express that a set  A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 5260 . 2  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A ) )
2 dffn2 5390 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  `' `' A : dom  A --> _V )
3 dmcnvcnv 4901 . . . . 5  |-  dom  `' `' A  =  dom  A
4 df-fn 5258 . . . . 5  |-  ( `' `' A  Fn  dom  A  <-> 
( Fun  `' `' A  /\  dom  `' `' A  =  dom  A ) )
53, 4mpbiran2 885 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  Fun  `' `' A )
62, 5bitr3i 242 . . 3  |-  ( `' `' A : dom  A --> _V 
<->  Fun  `' `' A
)
7 relcnv 5051 . . . . 5  |-  Rel  `' A
8 dfrel2 5124 . . . . 5  |-  ( Rel  `' A  <->  `' `' `' A  =  `' A )
97, 8mpbi 199 . . . 4  |-  `' `' `' A  =  `' A
109funeqi 5275 . . 3  |-  ( Fun  `' `' `' A  <->  Fun  `' A )
116, 10anbi12ci 679 . 2  |-  ( ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A )  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
121, 11bitri 240 1  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623   _Vcvv 2788   `'ccnv 4688   dom cdm 4689   Rel wrel 4694   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260
  Copyright terms: Public domain W3C validator