MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv1 Unicode version

Theorem f1cocnv1 5586
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 5566 . 2  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
2 f1ococnv1 5585 . 2  |-  ( F : A -1-1-onto-> ran  F  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
31, 2syl 15 1  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    _I cid 4386   `'ccnv 4770   ran crn 4772    |` cres 4773    o. ccom 4775   -1-1->wf1 5334   -1-1-onto->wf1o 5336
This theorem is referenced by:  f1eqcocnv  5892  domss2  7108  diophrw  26161
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4105  df-opab 4159  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344
  Copyright terms: Public domain W3C validator