MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmex Unicode version

Theorem f1dmex 5751
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 4131. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )

Proof of Theorem f1dmex
StepHypRef Expression
1 f1f 5437 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 frn 5395 . . . . . 6  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 15 . . . . 5  |-  ( F : A -1-1-> B  ->  ran  F  C_  B )
4 ssexg 4160 . . . . 5  |-  ( ( ran  F  C_  B  /\  B  e.  C
)  ->  ran  F  e. 
_V )
53, 4sylan 457 . . . 4  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  ran  F  e. 
_V )
65ex 423 . . 3  |-  ( F : A -1-1-> B  -> 
( B  e.  C  ->  ran  F  e.  _V ) )
7 f1cnv 5497 . . . . 5  |-  ( F : A -1-1-> B  ->  `' F : ran  F -1-1-onto-> A
)
8 f1ofo 5479 . . . . 5  |-  ( `' F : ran  F -1-1-onto-> A  ->  `' F : ran  F -onto-> A )
97, 8syl 15 . . . 4  |-  ( F : A -1-1-> B  ->  `' F : ran  F -onto-> A )
10 fornex 5750 . . . 4  |-  ( ran 
F  e.  _V  ->  ( `' F : ran  F -onto-> A  ->  A  e.  _V ) )
119, 10syl5com 26 . . 3  |-  ( F : A -1-1-> B  -> 
( ran  F  e.  _V  ->  A  e.  _V ) )
126, 11syld 40 . 2  |-  ( F : A -1-1-> B  -> 
( B  e.  C  ->  A  e.  _V )
)
1312imp 418 1  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   _Vcvv 2788    C_ wss 3152   `'ccnv 4688   ran crn 4690   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254
This theorem is referenced by:  abianfp  6471  f1domg  6881  ordtypelem10  7242  oiexg  7250  inf3lem7  7335  pwfseqlem4  8284  pwfseqlem5  8285  grothomex  8451  gsumzf1o  15196  dprdf1o  15267  tsmsf1o  17827  diophrw  26838  f1lindf  27292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
  Copyright terms: Public domain W3C validator