MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom2g Unicode version

Theorem f1dom2g 7088
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 7090 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1dom2g  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )

Proof of Theorem f1dom2g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1f 5602 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fex2 5566 . . . . 5  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
31, 2syl3an1 1217 . . . 4  |-  ( ( F : A -1-1-> B  /\  A  e.  V  /\  B  e.  W
)  ->  F  e.  _V )
433coml 1160 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F  e.  _V )
5 simp3 959 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
6 f1eq1 5597 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
76spcegv 3001 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
84, 5, 7sylc 58 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  E. f  f : A -1-1-> B )
9 brdomg 7081 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
1093ad2ant2 979 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
118, 10mpbird 224 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936   E.wex 1547    e. wcel 1721   _Vcvv 2920   class class class wbr 4176   -->wf 5413   -1-1->wf1 5414    ~<_ cdom 7070
This theorem is referenced by:  ssdomg  7116  domdifsn  7154  sucdom2  7266  unxpdomlem3  7278  unbnn  7326  fodomacn  7897  hauspwpwdom  17977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-dom 7074
  Copyright terms: Public domain W3C validator