MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1domg Unicode version

Theorem f1domg 6897
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )

Proof of Theorem f1domg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1dmex 5767 . . . . 5  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  A  e.  _V )
2 f1f 5453 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
3 fex 5765 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  _V )  ->  F  e.  _V )
42, 3sylan 457 . . . . 5  |-  ( ( F : A -1-1-> B  /\  A  e.  _V )  ->  F  e.  _V )
51, 4syldan 456 . . . 4  |-  ( ( F : A -1-1-> B  /\  B  e.  C
)  ->  F  e.  _V )
65expcom 424 . . 3  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  F  e.  _V )
)
7 f1eq1 5448 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
87spcegv 2882 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
96, 8syli 33 . 2  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
10 brdomg 6888 . 2  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
119, 10sylibrd 225 1  |-  ( B  e.  C  ->  ( F : A -1-1-> B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531    e. wcel 1696   _Vcvv 2801   class class class wbr 4039   -->wf 5267   -1-1->wf1 5268    ~<_ cdom 6877
This theorem is referenced by:  f1dom  6899  dom2d  6918  fseqen  7670  infpssrlem5  7949  hashf1  11411  vdwlem12  13055  2ndcdisj  17198  ovolicc2lem4  18895  basellem4  20337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-dom 6881
  Copyright terms: Public domain W3C validator