MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eqcocnv Unicode version

Theorem f1eqcocnv 5821
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )

Proof of Theorem f1eqcocnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 5519 . . . 4  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
2 coeq2 4858 . . . . 5  |-  ( F  =  G  ->  ( `' F  o.  F
)  =  ( `' F  o.  G ) )
32eqeq1d 2304 . . . 4  |-  ( F  =  G  ->  (
( `' F  o.  F )  =  (  _I  |`  A )  <->  ( `' F  o.  G
)  =  (  _I  |`  A ) ) )
41, 3syl5ibcom 211 . . 3  |-  ( F : A -1-1-> B  -> 
( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
54adantr 451 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A ) ) )
6 f1fn 5454 . . . . . . 7  |-  ( G : A -1-1-> B  ->  G  Fn  A )
76adantl 452 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  G  Fn  A )
87adantr 451 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  Fn  A )
9 f1fn 5454 . . . . . . 7  |-  ( F : A -1-1-> B  ->  F  Fn  A )
109adantr 451 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  F  Fn  A )
1110adantr 451 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  Fn  A )
12 eqid 2296 . . . . . . . . . 10  |-  x  =  x
13 resieq 4981 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x (  _I  |`  A ) x  <->  x  =  x ) )
1412, 13mpbiri 224 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
1514anidms 626 . . . . . . . 8  |-  ( x  e.  A  ->  x
(  _I  |`  A ) x )
1615adantl 452 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
17 breq 4041 . . . . . . . 8  |-  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  (
x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1817ad2antlr 707 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1916, 18mpbird 223 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x ( `' F  o.  G ) x )
20 fnfun 5357 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  A  ->  Fun  G )
217, 20syl 15 . . . . . . . . . . . . . . 15  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  G )
2221adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  G )
23 fndm 5359 . . . . . . . . . . . . . . . . 17  |-  ( G  Fn  A  ->  dom  G  =  A )
247, 23syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  G  =  A )
2524eleq2d 2363 . . . . . . . . . . . . . . 15  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  G  <->  x  e.  A ) )
2625biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  G )
27 funopfvb 5582 . . . . . . . . . . . . . 14  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( ( G `  x )  =  y  <->  <. x ,  y >.  e.  G ) )
2822, 26, 27syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( G `  x
)  =  y  <->  <. x ,  y >.  e.  G
) )
2928bicomd 192 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( <. x ,  y >.  e.  G  <->  ( G `  x )  =  y ) )
30 df-br 4040 . . . . . . . . . . . 12  |-  ( x G y  <->  <. x ,  y >.  e.  G
)
31 eqcom 2298 . . . . . . . . . . . 12  |-  ( y  =  ( G `  x )  <->  ( G `  x )  =  y )
3229, 30, 313bitr4g 279 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  <->  y  =  ( G `  x ) ) )
3332biimpd 198 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  -> 
y  =  ( G `
 x ) ) )
34 fnfun 5357 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  Fun  F )
3510, 34syl 15 . . . . . . . . . . . . . . 15  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  F )
3635adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  F )
37 fndm 5359 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  ->  dom  F  =  A )
3810, 37syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  F  =  A )
3938eleq2d 2363 . . . . . . . . . . . . . . 15  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  F  <->  x  e.  A ) )
4039biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  F )
41 funopfvb 5582 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <->  <. x ,  y >.  e.  F ) )
4236, 40, 41syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  <. x ,  y >.  e.  F
) )
43 df-br 4040 . . . . . . . . . . . . 13  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
4442, 43syl6rbbr 255 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x F y  <->  ( F `  x )  =  y ) )
45 vex 2804 . . . . . . . . . . . . 13  |-  y  e. 
_V
46 vex 2804 . . . . . . . . . . . . 13  |-  x  e. 
_V
4745, 46brcnv 4880 . . . . . . . . . . . 12  |-  ( y `' F x  <->  x F
y )
48 eqcom 2298 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
4944, 47, 483bitr4g 279 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  <-> 
y  =  ( F `
 x ) ) )
5049biimpd 198 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  ->  y  =  ( F `  x ) ) )
5133, 50anim12d 546 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( x G y  /\  y `' F x )  ->  (
y  =  ( G `
 x )  /\  y  =  ( F `  x ) ) ) )
5251eximdv 1612 . . . . . . . 8  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( E. y ( x G y  /\  y `' F x )  ->  E. y ( y  =  ( G `  x
)  /\  y  =  ( F `  x ) ) ) )
5346, 46brco 4868 . . . . . . . 8  |-  ( x ( `' F  o.  G ) x  <->  E. y
( x G y  /\  y `' F x ) )
54 fvex 5555 . . . . . . . . 9  |-  ( G `
 x )  e. 
_V
5554eqvinc 2908 . . . . . . . 8  |-  ( ( G `  x )  =  ( F `  x )  <->  E. y
( y  =  ( G `  x )  /\  y  =  ( F `  x ) ) )
5652, 53, 553imtr4g 261 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x ( `' F  o.  G ) x  -> 
( G `  x
)  =  ( F `
 x ) ) )
5756adantlr 695 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  ->  ( G `  x )  =  ( F `  x ) ) )
5819, 57mpd 14 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
598, 11, 58eqfnfvd 5641 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  =  F )
6059eqcomd 2301 . . 3  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  =  G )
6160ex 423 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  F  =  G ) )
625, 61impbid 183 1  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   <.cop 3656   class class class wbr 4039    _I cid 4320   `'ccnv 4704   dom cdm 4705    |` cres 4707    o. ccom 4709   Fun wfun 5265    Fn wfn 5266   -1-1->wf1 5268   ` cfv 5271
This theorem is referenced by:  weisoeq  5869
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator