MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Unicode version

Theorem f1fun 5455
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun  |-  ( F : A -1-1-> B  ->  Fun  F )

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 5454 . 2  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fnfun 5357 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 15 1  |-  ( F : A -1-1-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5265    Fn wfn 5266   -1-1->wf1 5268
This theorem is referenced by:  f1cocnv2  5517  fnwelem  6246  ackbij1b  7881  fin23lem31  7985  fin1a2lem6  8047  elhf  24876  usgrafun  28240  usgraedgop  28241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 5274  df-f 5275  df-f1 5276
  Copyright terms: Public domain W3C validator