MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Unicode version

Theorem f1imass 5788
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)

Proof of Theorem f1imass
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplrl 736 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  C  C_  A
)
21sseld 3179 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  a  e.  A ) )
3 simplr 731 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( F " C
)  C_  ( F " D ) )
43sseld 3179 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " C )  ->  ( F `  a )  e.  ( F " D ) ) )
5 simplll 734 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  F : A -1-1-> B
)
6 simpr 447 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  a  e.  A )
7 simp1rl 1020 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D )  /\  a  e.  A
)  ->  C  C_  A
)
873expa 1151 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  C  C_  A )
9 f1elima 5787 . . . . . . . . 9  |-  ( ( F : A -1-1-> B  /\  a  e.  A  /\  C  C_  A )  ->  ( ( F `
 a )  e.  ( F " C
)  <->  a  e.  C
) )
105, 6, 8, 9syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " C )  <-> 
a  e.  C ) )
11 simp1rr 1021 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D )  /\  a  e.  A
)  ->  D  C_  A
)
12113expa 1151 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  D  C_  A )
13 f1elima 5787 . . . . . . . . 9  |-  ( ( F : A -1-1-> B  /\  a  e.  A  /\  D  C_  A )  ->  ( ( F `
 a )  e.  ( F " D
)  <->  a  e.  D
) )
145, 6, 12, 13syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " D )  <-> 
a  e.  D ) )
154, 10, 143imtr3d 258 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( a  e.  C  ->  a  e.  D ) )
1615ex 423 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  A  ->  ( a  e.  C  ->  a  e.  D ) ) )
172, 16syld 40 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  ( a  e.  C  ->  a  e.  D ) ) )
1817pm2.43d 44 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  a  e.  D ) )
1918ssrdv 3185 . . 3  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  C  C_  D
)
2019ex 423 . 2  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  ->  C  C_  D
) )
21 imass2 5049 . 2  |-  ( C 
C_  D  ->  ( F " C )  C_  ( F " D ) )
2220, 21impbid1 194 1  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   "cima 4692   -1-1->wf1 5252   ` cfv 5255
This theorem is referenced by:  f1imaeq  5789  f1imapss  5790  enfin2i  7947  tsmsf1o  17827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fv 5263
  Copyright terms: Public domain W3C validator