MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imass Structured version   Unicode version

Theorem f1imass 6002
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imass  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)

Proof of Theorem f1imass
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplrl 737 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  C  C_  A
)
21sseld 3339 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  a  e.  A ) )
3 simplr 732 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( F " C
)  C_  ( F " D ) )
43sseld 3339 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " C )  ->  ( F `  a )  e.  ( F " D ) ) )
5 simplll 735 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  F : A -1-1-> B
)
6 simpr 448 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  a  e.  A )
7 simp1rl 1022 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D )  /\  a  e.  A
)  ->  C  C_  A
)
873expa 1153 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  C  C_  A )
9 f1elima 6001 . . . . . . . . 9  |-  ( ( F : A -1-1-> B  /\  a  e.  A  /\  C  C_  A )  ->  ( ( F `
 a )  e.  ( F " C
)  <->  a  e.  C
) )
105, 6, 8, 9syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " C )  <-> 
a  e.  C ) )
11 simp1rr 1023 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D )  /\  a  e.  A
)  ->  D  C_  A
)
12113expa 1153 . . . . . . . . 9  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  D  C_  A )
13 f1elima 6001 . . . . . . . . 9  |-  ( ( F : A -1-1-> B  /\  a  e.  A  /\  D  C_  A )  ->  ( ( F `
 a )  e.  ( F " D
)  <->  a  e.  D
) )
145, 6, 12, 13syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( ( F `  a )  e.  ( F " D )  <-> 
a  e.  D ) )
154, 10, 143imtr3d 259 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  /\  ( F " C ) 
C_  ( F " D ) )  /\  a  e.  A )  ->  ( a  e.  C  ->  a  e.  D ) )
1615ex 424 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  A  ->  ( a  e.  C  ->  a  e.  D ) ) )
172, 16syld 42 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  ( a  e.  C  ->  a  e.  D ) ) )
1817pm2.43d 46 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  ( a  e.  C  ->  a  e.  D ) )
1918ssrdv 3346 . . 3  |-  ( ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A
) )  /\  ( F " C )  C_  ( F " D ) )  ->  C  C_  D
)
2019ex 424 . 2  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  ->  C  C_  D
) )
21 imass2 5232 . 2  |-  ( C 
C_  D  ->  ( F " C )  C_  ( F " D ) )
2220, 21impbid1 195 1  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725    C_ wss 3312   "cima 4873   -1-1->wf1 5443   ` cfv 5446
This theorem is referenced by:  f1imaeq  6003  f1imapss  6004  enfin2i  8193  tsmsf1o  18166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fv 5454
  Copyright terms: Public domain W3C validator