Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1lindf Unicode version

Theorem f1lindf 26962
Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
f1lindf  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F  o.  G ) LIndF  W )

Proof of Theorem f1lindf
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2388 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
21lindff 26955 . . . . . 6  |-  ( ( F LIndF  W  /\  W  e.  LMod )  ->  F : dom  F --> ( Base `  W ) )
32ancoms 440 . . . . 5  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  F : dom  F --> ( Base `  W
) )
433adant3 977 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  F : dom  F --> ( Base `  W ) )
5 f1f 5580 . . . . 5  |-  ( G : K -1-1-> dom  F  ->  G : K --> dom  F
)
653ad2ant3 980 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  G : K --> dom  F )
7 fco 5541 . . . 4  |-  ( ( F : dom  F --> ( Base `  W )  /\  G : K --> dom  F
)  ->  ( F  o.  G ) : K --> ( Base `  W )
)
84, 6, 7syl2anc 643 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F  o.  G ) : K --> ( Base `  W
) )
9 ffdm 5546 . . . 4  |-  ( ( F  o.  G ) : K --> ( Base `  W )  ->  (
( F  o.  G
) : dom  ( F  o.  G ) --> ( Base `  W )  /\  dom  ( F  o.  G )  C_  K
) )
109simpld 446 . . 3  |-  ( ( F  o.  G ) : K --> ( Base `  W )  ->  ( F  o.  G ) : dom  ( F  o.  G ) --> ( Base `  W ) )
118, 10syl 16 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F  o.  G ) : dom  ( F  o.  G ) --> ( Base `  W ) )
12 simpl2 961 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  F LIndF  W )
136adantr 452 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  G : K --> dom  F )
14 fdm 5536 . . . . . . . . . 10  |-  ( ( F  o.  G ) : K --> ( Base `  W )  ->  dom  ( F  o.  G
)  =  K )
158, 14syl 16 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  dom  ( F  o.  G
)  =  K )
1615eleq2d 2455 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  (
x  e.  dom  ( F  o.  G )  <->  x  e.  K ) )
1716biimpa 471 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  x  e.  K
)
1813, 17ffvelrnd 5811 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( G `  x )  e.  dom  F )
1918adantrr 698 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  ( G `  x )  e.  dom  F )
20 eldifi 3413 . . . . . 6  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
2120ad2antll 710 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
22 eldifsni 3872 . . . . . 6  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
2322ad2antll 710 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
24 eqid 2388 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
25 eqid 2388 . . . . . 6  |-  ( LSpan `  W )  =  (
LSpan `  W )
26 eqid 2388 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
27 eqid 2388 . . . . . 6  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
28 eqid 2388 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2924, 25, 26, 27, 28lindfind 26956 . . . . 5  |-  ( ( ( F LIndF  W  /\  ( G `  x )  e.  dom  F )  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) ) )  ->  -.  ( k ( .s
`  W ) ( F `  ( G `
 x ) ) )  e.  ( (
LSpan `  W ) `  ( F " ( dom 
F  \  { ( G `  x ) } ) ) ) )
3012, 19, 21, 23, 29syl22anc 1185 . . . 4  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( F `  ( G `  x ) ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) )
31 f1fn 5581 . . . . . . . . . . 11  |-  ( G : K -1-1-> dom  F  ->  G  Fn  K )
32313ad2ant3 980 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  G  Fn  K )
3332adantr 452 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  G  Fn  K
)
34 fvco2 5738 . . . . . . . . 9  |-  ( ( G  Fn  K  /\  x  e.  K )  ->  ( ( F  o.  G ) `  x
)  =  ( F `
 ( G `  x ) ) )
3533, 17, 34syl2anc 643 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( ( F  o.  G ) `  x )  =  ( F `  ( G `
 x ) ) )
3635oveq2d 6037 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( k ( .s `  W ) ( ( F  o.  G ) `  x
) )  =  ( k ( .s `  W ) ( F `
 ( G `  x ) ) ) )
3736eleq1d 2454 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( ( k ( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) )  <->  ( k
( .s `  W
) ( F `  ( G `  x ) ) )  e.  ( ( LSpan `  W ) `  ( ( F  o.  G ) " ( dom  ( F  o.  G
)  \  { x } ) ) ) ) )
38 simpl1 960 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  W  e.  LMod )
39 imassrn 5157 . . . . . . . . . . 11  |-  ( F
" ( dom  F  \  { ( G `  x ) } ) )  C_  ran  F
40 frn 5538 . . . . . . . . . . . 12  |-  ( F : dom  F --> ( Base `  W )  ->  ran  F 
C_  ( Base `  W
) )
414, 40syl 16 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ran  F 
C_  ( Base `  W
) )
4239, 41syl5ss 3303 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F " ( dom  F  \  { ( G `  x ) } ) )  C_  ( Base `  W ) )
4342adantr 452 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( F " ( dom  F  \  { ( G `  x ) } ) )  C_  ( Base `  W )
)
44 imaco 5316 . . . . . . . . . 10  |-  ( ( F  o.  G )
" ( dom  ( F  o.  G )  \  { x } ) )  =  ( F
" ( G "
( dom  ( F  o.  G )  \  {
x } ) ) )
4515difeq1d 3408 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( dom  ( F  o.  G
)  \  { x } )  =  ( K  \  { x } ) )
4645imaeq2d 5144 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( G " ( dom  ( F  o.  G )  \  { x } ) )  =  ( G
" ( K  \  { x } ) ) )
47 df-f1 5400 . . . . . . . . . . . . . . . . 17  |-  ( G : K -1-1-> dom  F  <->  ( G : K --> dom  F  /\  Fun  `' G ) )
4847simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( G : K -1-1-> dom  F  ->  Fun  `' G )
49483ad2ant3 980 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  Fun  `' G )
50 imadif 5469 . . . . . . . . . . . . . . 15  |-  ( Fun  `' G  ->  ( G
" ( K  \  { x } ) )  =  ( ( G " K ) 
\  ( G " { x } ) ) )
5149, 50syl 16 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( G " ( K  \  { x } ) )  =  ( ( G " K ) 
\  ( G " { x } ) ) )
5246, 51eqtrd 2420 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( G " ( dom  ( F  o.  G )  \  { x } ) )  =  ( ( G " K ) 
\  ( G " { x } ) ) )
5352adantr 452 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( G " ( dom  ( F  o.  G
)  \  { x } ) )  =  ( ( G " K )  \  ( G " { x }
) ) )
54 fnsnfv 5726 . . . . . . . . . . . . . . 15  |-  ( ( G  Fn  K  /\  x  e.  K )  ->  { ( G `  x ) }  =  ( G " { x } ) )
5532, 54sylan 458 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  { ( G `  x ) }  =  ( G " { x } ) )
5655difeq2d 3409 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( ( G " K )  \  {
( G `  x
) } )  =  ( ( G " K )  \  ( G " { x }
) ) )
57 imassrn 5157 . . . . . . . . . . . . . . 15  |-  ( G
" K )  C_  ran  G
586adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  G : K --> dom  F
)
59 frn 5538 . . . . . . . . . . . . . . . 16  |-  ( G : K --> dom  F  ->  ran  G  C_  dom  F )
6058, 59syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ran  G  C_  dom  F )
6157, 60syl5ss 3303 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( G " K
)  C_  dom  F )
6261ssdifd 3427 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( ( G " K )  \  {
( G `  x
) } )  C_  ( dom  F  \  {
( G `  x
) } ) )
6356, 62eqsstr3d 3327 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( ( G " K )  \  ( G " { x }
) )  C_  ( dom  F  \  { ( G `  x ) } ) )
6453, 63eqsstrd 3326 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( G " ( dom  ( F  o.  G
)  \  { x } ) )  C_  ( dom  F  \  {
( G `  x
) } ) )
65 imass2 5181 . . . . . . . . . . 11  |-  ( ( G " ( dom  ( F  o.  G
)  \  { x } ) )  C_  ( dom  F  \  {
( G `  x
) } )  -> 
( F " ( G " ( dom  ( F  o.  G )  \  { x } ) ) )  C_  ( F " ( dom  F  \  { ( G `  x ) } ) ) )
6664, 65syl 16 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( F " ( G " ( dom  ( F  o.  G )  \  { x } ) ) )  C_  ( F " ( dom  F  \  { ( G `  x ) } ) ) )
6744, 66syl5eqss 3336 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( ( F  o.  G ) " ( dom  ( F  o.  G
)  \  { x } ) )  C_  ( F " ( dom 
F  \  { ( G `  x ) } ) ) )
681, 25lspss 15988 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( F " ( dom  F  \  { ( G `  x ) } ) )  C_  ( Base `  W )  /\  (
( F  o.  G
) " ( dom  ( F  o.  G
)  \  { x } ) )  C_  ( F " ( dom 
F  \  { ( G `  x ) } ) ) )  ->  ( ( LSpan `  W ) `  (
( F  o.  G
) " ( dom  ( F  o.  G
)  \  { x } ) ) ) 
C_  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) )
6938, 43, 67, 68syl3anc 1184 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  K )  ->  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) )  C_  (
( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) )
7017, 69syldan 457 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( ( LSpan `  W ) `  (
( F  o.  G
) " ( dom  ( F  o.  G
)  \  { x } ) ) ) 
C_  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) )
7170sseld 3291 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( ( k ( .s `  W
) ( F `  ( G `  x ) ) )  e.  ( ( LSpan `  W ) `  ( ( F  o.  G ) " ( dom  ( F  o.  G
)  \  { x } ) ) )  ->  ( k ( .s `  W ) ( F `  ( G `  x )
) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) ) )
7237, 71sylbid 207 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  x  e.  dom  ( F  o.  G ) )  ->  ( ( k ( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) )  ->  (
k ( .s `  W ) ( F `
 ( G `  x ) ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) ) )
7372adantrr 698 . . . 4  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  ( ( k ( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) )  ->  (
k ( .s `  W ) ( F `
 ( G `  x ) ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { ( G `  x ) } ) ) ) ) )
7430, 73mtod 170 . . 3  |-  ( ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom  F )  /\  ( x  e.  dom  ( F  o.  G
)  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) ) )
7574ralrimivva 2742 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  A. x  e.  dom  ( F  o.  G ) A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( ( F  o.  G ) `
 x ) )  e.  ( ( LSpan `  W ) `  (
( F  o.  G
) " ( dom  ( F  o.  G
)  \  { x } ) ) ) )
76 simp1 957 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  W  e.  LMod )
77 rellindf 26948 . . . . . 6  |-  Rel LIndF
7877brrelexi 4859 . . . . 5  |-  ( F LIndF 
W  ->  F  e.  _V )
79783ad2ant2 979 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  F  e.  _V )
80 simp3 959 . . . . . 6  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  G : K -1-1-> dom  F )
81 dmexg 5071 . . . . . . 7  |-  ( F  e.  _V  ->  dom  F  e.  _V )
8279, 81syl 16 . . . . . 6  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  dom  F  e.  _V )
83 f1dmex 5911 . . . . . 6  |-  ( ( G : K -1-1-> dom  F  /\  dom  F  e. 
_V )  ->  K  e.  _V )
8480, 82, 83syl2anc 643 . . . . 5  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  K  e.  _V )
85 fex 5909 . . . . 5  |-  ( ( G : K --> dom  F  /\  K  e.  _V )  ->  G  e.  _V )
866, 84, 85syl2anc 643 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  G  e.  _V )
87 coexg 5353 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  o.  G
)  e.  _V )
8879, 86, 87syl2anc 643 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F  o.  G )  e.  _V )
891, 24, 25, 26, 28, 27islindf 26952 . . 3  |-  ( ( W  e.  LMod  /\  ( F  o.  G )  e.  _V )  ->  (
( F  o.  G
) LIndF  W  <->  ( ( F  o.  G ) : dom  ( F  o.  G ) --> ( Base `  W )  /\  A. x  e.  dom  ( F  o.  G ) A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) ) ) ) )
9076, 88, 89syl2anc 643 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  (
( F  o.  G
) LIndF  W  <->  ( ( F  o.  G ) : dom  ( F  o.  G ) --> ( Base `  W )  /\  A. x  e.  dom  ( F  o.  G ) A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) ( ( F  o.  G ) `  x ) )  e.  ( ( LSpan `  W
) `  ( ( F  o.  G ) " ( dom  ( F  o.  G )  \  { x } ) ) ) ) ) )
9111, 75, 90mpbir2and 889 1  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  G : K -1-1-> dom 
F )  ->  ( F  o.  G ) LIndF  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   _Vcvv 2900    \ cdif 3261    C_ wss 3264   {csn 3758   class class class wbr 4154   `'ccnv 4818   dom cdm 4819   ran crn 4820   "cima 4822    o. ccom 4823   Fun wfun 5389    Fn wfn 5390   -->wf 5391   -1-1->wf1 5392   ` cfv 5395  (class class class)co 6021   Basecbs 13397  Scalarcsca 13460   .scvsca 13461   0gc0g 13651   LModclmod 15878   LSpanclspn 15975   LIndF clindf 26944
This theorem is referenced by:  lindfres  26963  f1linds  26965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-riota 6486  df-slot 13401  df-base 13402  df-0g 13655  df-mnd 14618  df-grp 14740  df-lmod 15880  df-lss 15937  df-lsp 15976  df-lindf 26946
  Copyright terms: Public domain W3C validator