Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1linds Unicode version

Theorem f1linds 27295
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
f1linds  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  F LIndF  W )

Proof of Theorem f1linds
StepHypRef Expression
1 f1f 5437 . . . 4  |-  ( F : D -1-1-> S  ->  F : D --> S )
2 fcoi2 5416 . . . 4  |-  ( F : D --> S  -> 
( (  _I  |`  S )  o.  F )  =  F )
31, 2syl 15 . . 3  |-  ( F : D -1-1-> S  -> 
( (  _I  |`  S )  o.  F )  =  F )
433ad2ant3 978 . 2  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  ( (  _I  |`  S )  o.  F )  =  F )
5 simp1 955 . . 3  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  W  e.  LMod )
6 linds2 27281 . . . 4  |-  ( S  e.  (LIndS `  W
)  ->  (  _I  |`  S ) LIndF  W )
763ad2ant2 977 . . 3  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  (  _I  |`  S ) LIndF  W )
8 dmresi 5005 . . . . . 6  |-  dom  (  _I  |`  S )  =  S
9 f1eq3 5434 . . . . . 6  |-  ( dom  (  _I  |`  S )  =  S  ->  ( F : D -1-1-> dom  (  _I  |`  S )  <->  F : D -1-1-> S ) )
108, 9ax-mp 8 . . . . 5  |-  ( F : D -1-1-> dom  (  _I  |`  S )  <->  F : D -1-1-> S )
1110biimpri 197 . . . 4  |-  ( F : D -1-1-> S  ->  F : D -1-1-> dom  (  _I  |`  S ) )
12113ad2ant3 978 . . 3  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  F : D -1-1-> dom  (  _I  |`  S ) )
13 f1lindf 27292 . . 3  |-  ( ( W  e.  LMod  /\  (  _I  |`  S ) LIndF  W  /\  F : D -1-1-> dom  (  _I  |`  S ) )  ->  ( (  _I  |`  S )  o.  F ) LIndF  W )
145, 7, 12, 13syl3anc 1182 . 2  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  ( (  _I  |`  S )  o.  F ) LIndF  W )
154, 14eqbrtrrd 4045 1  |-  ( ( W  e.  LMod  /\  S  e.  (LIndS `  W )  /\  F : D -1-1-> S
)  ->  F LIndF  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023    _I cid 4304   dom cdm 4689    |` cres 4691    o. ccom 4693   -->wf 5251   -1-1->wf1 5252   ` cfv 5255   LModclmod 15627   LIndF clindf 27274  LIndSclinds 27275
This theorem is referenced by:  islindf3  27296  lindsmm  27298  lbslcic  27311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-slot 13152  df-base 13153  df-0g 13404  df-mnd 14367  df-grp 14489  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lindf 27276  df-linds 27277
  Copyright terms: Public domain W3C validator