MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o0 Unicode version

Theorem f1o0 5526
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
Assertion
Ref Expression
f1o0  |-  (/) : (/) -1-1-onto-> (/)

Proof of Theorem f1o0
StepHypRef Expression
1 eqid 2296 . 2  |-  (/)  =  (/)
2 f1o00 5524 . 2  |-  ( (/) :
(/)
-1-1-onto-> (/)  <->  (
(/)  =  (/)  /\  (/)  =  (/) ) )
31, 1, 2mpbir2an 886 1  |-  (/) : (/) -1-1-onto-> (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1632   (/)c0 3468   -1-1-onto->wf1o 5270
This theorem is referenced by:  brwdom2  7303  cnfcom  7419  ackbij2lem2  7882  eupa0  23913  iso0  27639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator