MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvb Unicode version

Theorem f1ocnvb 5502
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 5501 . 2  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1ocnv 5501 . . 3  |-  ( `' F : B -1-1-onto-> A  ->  `' `' F : A -1-1-onto-> B )
3 dfrel2 5140 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
4 f1oeq1 5479 . . . 4  |-  ( `' `' F  =  F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A -1-1-onto-> B ) )
53, 4sylbi 187 . . 3  |-  ( Rel 
F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A
-1-1-onto-> B ) )
62, 5syl5ib 210 . 2  |-  ( Rel 
F  ->  ( `' F : B -1-1-onto-> A  ->  F : A
-1-1-onto-> B ) )
71, 6impbid2 195 1  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   `'ccnv 4704   Rel wrel 4710   -1-1-onto->wf1o 5270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator