MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv1 Structured version   Unicode version

Theorem f1ocnvfv1 6043
Description: The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )

Proof of Theorem f1ocnvfv1
StepHypRef Expression
1 f1ococnv1 5733 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
21fveq1d 5759 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( `' F  o.  F
) `  C )  =  ( (  _I  |`  A ) `  C
) )
32adantr 453 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( (  _I  |`  A ) `  C ) )
4 f1of 5703 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
5 fvco3 5829 . . 3  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
64, 5sylan 459 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F  o.  F ) `  C
)  =  ( `' F `  ( F `
 C ) ) )
7 fvresi 5953 . . 3  |-  ( C  e.  A  ->  (
(  _I  |`  A ) `
 C )  =  C )
87adantl 454 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( (  _I  |`  A ) `
 C )  =  C )
93, 6, 83eqtr3d 2482 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727    _I cid 4522   `'ccnv 4906    |` cres 4909    o. ccom 4911   -->wf 5479   -1-1-onto->wf1o 5482   ` cfv 5483
This theorem is referenced by:  f1ocnvfv  6045  wemapwe  7683  fseqenlem2  7937  acndom  7963  isf34lem5  8289  axcc3  8349  pwfseqlem1  8564  hashdom  11684  fz1isolem  11741  cnrecnv  12001  sadcadd  13001  sadadd2  13003  invinv  14026  catcisolem  14292  srngnvl  15975  2ndcdisj  17550  cnheiborlem  19010  iunmbl2  19482  dvcnvlem  19891  eff1olem  20481  logef  20507  nbgraf1olem5  21486  adjbdlnb  23618  cnvbrabra  23646  tpr2rico  24341  lautj  30988  lautm  30989  ldilcnv  31010  ltrneq2  31043  trlcnv  31060  diaocN  32021  dihcnvid1  32168  dochocss  32262  mapdcnvid1N  32550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491
  Copyright terms: Public domain W3C validator