MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv3 Structured version   Unicode version

Theorem f1ocnvfv3 6577
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
f1ocnvfv3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A
( F `  x
)  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ocnvfv3
StepHypRef Expression
1 f1ocnvdm 6010 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A
)
2 f1ocnvfvb 6009 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
323expa 1153 . . . . 5  |-  ( ( ( F : A -1-1-onto-> B  /\  x  e.  A
)  /\  C  e.  B )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
43an32s 780 . . . 4  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  ( `' F `  C )  =  x ) )
5 eqcom 2437 . . . 4  |-  ( x  =  ( `' F `  C )  <->  ( `' F `  C )  =  x )
64, 5syl6bbr 255 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  x  =  ( `' F `  C ) ) )
71, 6riota5 6567 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( iota_ x  e.  A
( F `  x
)  =  C )  =  ( `' F `  C ) )
87eqcomd 2440 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
iota_ x  e.  A
( F `  x
)  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   `'ccnv 4869   -1-1-onto->wf1o 5445   ` cfv 5446   iota_crio 6534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-riota 6541
  Copyright terms: Public domain W3C validator