MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oco Unicode version

Theorem f1oco 5512
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
f1oco  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )

Proof of Theorem f1oco
StepHypRef Expression
1 df-f1o 5278 . . 3  |-  ( F : B -1-1-onto-> C  <->  ( F : B -1-1-> C  /\  F : B -onto-> C ) )
2 df-f1o 5278 . . 3  |-  ( G : A -1-1-onto-> B  <->  ( G : A -1-1-> B  /\  G : A -onto-> B ) )
3 f1co 5462 . . . . 5  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
4 foco 5477 . . . . 5  |-  ( ( F : B -onto-> C  /\  G : A -onto-> B
)  ->  ( F  o.  G ) : A -onto-> C )
53, 4anim12i 549 . . . 4  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( F : B -onto-> C  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
65an4s 799 . . 3  |-  ( ( ( F : B -1-1-> C  /\  F : B -onto-> C )  /\  ( G : A -1-1-> B  /\  G : A -onto-> B ) )  ->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
71, 2, 6syl2anb 465 . 2  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  (
( F  o.  G
) : A -1-1-> C  /\  ( F  o.  G
) : A -onto-> C
) )
8 df-f1o 5278 . 2  |-  ( ( F  o.  G ) : A -1-1-onto-> C  <->  ( ( F  o.  G ) : A -1-1-> C  /\  ( F  o.  G ) : A -onto-> C ) )
97, 8sylibr 203 1  |-  ( ( F : B -1-1-onto-> C  /\  G : A -1-1-onto-> B )  ->  ( F  o.  G ) : A -1-1-onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    o. ccom 4709   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270
This theorem is referenced by:  fveqf1o  5822  isotr  5849  ener  6924  omf1o  6981  oef1o  7417  cnfcom3  7423  infxpenc  7661  ackbij2lem2  7882  canthp1lem2  8291  pwfseqlem5  8301  hashfacen  11408  summolem3  12203  fsumf1o  12212  ackbijnn  12302  eulerthlem2  12866  symgcl  14794  gsumval3eu  15206  gsumval3  15207  resinf1o  19914  counop  22517  derangenlem  23717  subfacp1lem5  23730  prodmolem3  24156  fprodf1o  24172  rngoisoco  26716  enfixsn  27360  pmtrfconj  27510  lautco  30908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator