MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1od Unicode version

Theorem f1od 6067
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1od.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
f1od.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
f1od.4  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
Assertion
Ref Expression
f1od  |-  ( ph  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)    W( x, y)    X( x, y)

Proof of Theorem f1od
StepHypRef Expression
1 f1od.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
2 f1od.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
3 f1od.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
4 f1od.4 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
51, 2, 3, 4f1ocnvd 6066 . 2  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
65simpld 445 1  |-  ( ph  ->  F : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    e. cmpt 4077   `'ccnv 4688   -1-1-onto->wf1o 5254
This theorem is referenced by:  cnvf1o  6217  ixpsnf1o  6856  en2d  6897  pw2f1o  6967  seqf1olem1  11085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
  Copyright terms: Public domain W3C validator