MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen Structured version   Unicode version

Theorem f1oen 7120
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1oen.1  |-  A  e. 
_V
Assertion
Ref Expression
f1oen  |-  ( F : A -1-1-onto-> B  ->  A  ~~  B )

Proof of Theorem f1oen
StepHypRef Expression
1 f1oen.1 . 2  |-  A  e. 
_V
2 f1oeng 7118 . 2  |-  ( ( A  e.  _V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
31, 2mpan 652 1  |-  ( F : A -1-1-onto-> B  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   _Vcvv 2948   class class class wbr 4204   -1-1-onto->wf1o 5445    ~~ cen 7098
This theorem is referenced by:  infxpenlem  7887  dfac8alem  7902  dfac12lem2  8016  dfac12lem3  8017  r1om  8116  axcc2lem  8308  summolem3  12500  summolem2a  12501  summolem2  12502  zsum  12504  cpnnen  12820  eulerthlem2  13163  4sqlem11  13315  gicen  15056  orbsta2  15083  odhash  15200  odhash2  15201  sylow1lem2  15225  sylow2blem1  15246  znhash  16831  basellem5  20859  eupafi  21685  ballotlemfrc  24776  ballotlem8  24786  erdszelem10  24878  prodmolem3  25251  prodmolem2a  25252  prodmolem2  25253  zprod  25255  mapfien2  27226  pwfi2en  27229  hashgcdeq  27485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-en 7102
  Copyright terms: Public domain W3C validator