MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen3g Unicode version

Theorem f1oen3g 6893
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6896 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen3g  |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )

Proof of Theorem f1oen3g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5479 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-onto-> B  <->  F : A
-1-1-onto-> B ) )
21spcegv 2882 . . 3  |-  ( F  e.  V  ->  ( F : A -1-1-onto-> B  ->  E. f 
f : A -1-1-onto-> B ) )
32imp 418 . 2  |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  E. f 
f : A -1-1-onto-> B )
4 bren 6887 . 2  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
53, 4sylibr 203 1  |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    e. wcel 1696   class class class wbr 4039   -1-1-onto->wf1o 5270    ~~ cen 6876
This theorem is referenced by:  f1oen2g  6894  unen  6959  domdifsn  6961  domunsncan  6978  sbthlem10  6996  domssex  7038  phplem2  7057  sucdom2  7073  pssnn  7097  f1finf1o  7102  oien  7269  infdifsn  7373  fin4en1  7951  fin23lem21  7981  hashf1lem2  11410  odinf  14892  gsumval3  15207  hmphen2  17506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6880
  Copyright terms: Public domain W3C validator