Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oen3g Structured version   Unicode version

Theorem f1oen3g 7125
 Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 7128 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
f1oen3g

Proof of Theorem f1oen3g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5667 . . . 4
21spcegv 3039 . . 3
32imp 420 . 2
4 bren 7119 . 2
53, 4sylibr 205 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wex 1551   wcel 1726   class class class wbr 4214  wf1o 5455   cen 7108 This theorem is referenced by:  f1oen2g  7126  unen  7191  domdifsn  7193  domunsncan  7210  sbthlem10  7228  domssex  7270  phplem2  7289  sucdom2  7305  pssnn  7329  f1finf1o  7337  oien  7509  infdifsn  7613  fin4en1  8191  fin23lem21  8221  hashf1lem2  11707  odinf  15201  gsumval3  15516  hmphen2  17833 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-en 7112
 Copyright terms: Public domain W3C validator