MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ompt Unicode version

Theorem f1ompt 5698
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
f1ompt  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Distinct variable groups:    x, y, A    x, B, y    y, C    y, F
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem f1ompt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffn 5405 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
2 dff1o4 5496 . . . . . 6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
32baib 871 . . . . 5  |-  ( F  Fn  A  ->  ( F : A -1-1-onto-> B  <->  `' F  Fn  B
) )
41, 3syl 15 . . . 4  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  `' F  Fn  B ) )
5 fnres 5376 . . . . . 6  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! z 
y `' F z )
6 nfcv 2432 . . . . . . . . . 10  |-  F/_ x
z
7 fmpt.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  A  |->  C )
8 nfmpt1 4125 . . . . . . . . . . 11  |-  F/_ x
( x  e.  A  |->  C )
97, 8nfcxfr 2429 . . . . . . . . . 10  |-  F/_ x F
10 nfcv 2432 . . . . . . . . . 10  |-  F/_ x
y
116, 9, 10nfbr 4083 . . . . . . . . 9  |-  F/ x  z F y
12 nfv 1609 . . . . . . . . 9  |-  F/ z ( x  e.  A  /\  y  =  C
)
13 breq1 4042 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z F y  <->  x F
y ) )
14 df-mpt 4095 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
157, 14eqtri 2316 . . . . . . . . . . . 12  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1615breqi 4045 . . . . . . . . . . 11  |-  ( x F y  <->  x { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) } y )
17 df-br 4040 . . . . . . . . . . . 12  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } )
18 opabid 4287 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }  <->  ( x  e.  A  /\  y  =  C ) )
1917, 18bitri 240 . . . . . . . . . . 11  |-  ( x { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) } y  <-> 
( x  e.  A  /\  y  =  C
) )
2016, 19bitri 240 . . . . . . . . . 10  |-  ( x F y  <->  ( x  e.  A  /\  y  =  C ) )
2113, 20syl6bb 252 . . . . . . . . 9  |-  ( z  =  x  ->  (
z F y  <->  ( x  e.  A  /\  y  =  C ) ) )
2211, 12, 21cbveu 2176 . . . . . . . 8  |-  ( E! z  z F y  <-> 
E! x ( x  e.  A  /\  y  =  C ) )
23 vex 2804 . . . . . . . . . 10  |-  y  e. 
_V
24 vex 2804 . . . . . . . . . 10  |-  z  e. 
_V
2523, 24brcnv 4880 . . . . . . . . 9  |-  ( y `' F z  <->  z F
y )
2625eubii 2165 . . . . . . . 8  |-  ( E! z  y `' F
z  <->  E! z  z F y )
27 df-reu 2563 . . . . . . . 8  |-  ( E! x  e.  A  y  =  C  <->  E! x
( x  e.  A  /\  y  =  C
) )
2822, 26, 273bitr4i 268 . . . . . . 7  |-  ( E! z  y `' F
z  <->  E! x  e.  A  y  =  C )
2928ralbii 2580 . . . . . 6  |-  ( A. y  e.  B  E! z  y `' F
z  <->  A. y  e.  B  E! x  e.  A  y  =  C )
305, 29bitri 240 . . . . 5  |-  ( ( `' F  |`  B )  Fn  B  <->  A. y  e.  B  E! x  e.  A  y  =  C )
31 relcnv 5067 . . . . . . 7  |-  Rel  `' F
32 df-rn 4716 . . . . . . . 8  |-  ran  F  =  dom  `' F
33 frn 5411 . . . . . . . 8  |-  ( F : A --> B  ->  ran  F  C_  B )
3432, 33syl5eqssr 3236 . . . . . . 7  |-  ( F : A --> B  ->  dom  `' F  C_  B )
35 relssres 5008 . . . . . . 7  |-  ( ( Rel  `' F  /\  dom  `' F  C_  B )  ->  ( `' F  |`  B )  =  `' F )
3631, 34, 35sylancr 644 . . . . . 6  |-  ( F : A --> B  -> 
( `' F  |`  B )  =  `' F )
3736fneq1d 5351 . . . . 5  |-  ( F : A --> B  -> 
( ( `' F  |`  B )  Fn  B  <->  `' F  Fn  B ) )
3830, 37syl5bbr 250 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E! x  e.  A  y  =  C  <->  `' F  Fn  B
) )
394, 38bitr4d 247 . . 3  |-  ( F : A --> B  -> 
( F : A -1-1-onto-> B  <->  A. y  e.  B  E! x  e.  A  y  =  C ) )
4039pm5.32i 618 . 2  |-  ( ( F : A --> B  /\  F : A -1-1-onto-> B )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
41 f1of 5488 . . 3  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
4241pm4.71ri 614 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A
--> B  /\  F : A
-1-1-onto-> B ) )
437fmpt 5697 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
4443anbi1i 676 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )  <->  ( F : A --> B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
4540, 42, 443bitr4i 268 1  |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E!weu 2156   A.wral 2556   E!wreu 2558    C_ wss 3165   <.cop 3656   class class class wbr 4039   {copab 4092    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   Rel wrel 4710    Fn wfn 5266   -->wf 5267   -1-1-onto->wf1o 5270
This theorem is referenced by:  oaf1o  6577  xpf1o  7039  icoshftf1o  10775  dfod2  14893  xrmulc1cn  23318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator