Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omvdco2 Structured version   Unicode version

Theorem f1omvdco2 27368
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X )

Proof of Theorem f1omvdco2
StepHypRef Expression
1 excxor 1318 . . 3  |-  ( ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X )  <->  ( ( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G  \  _I  )  C_  X )  \/  ( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G 
\  _I  )  C_  X ) ) )
2 coass 5388 . . . . . . . . . . . 12  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
3 f1ococnv1 5704 . . . . . . . . . . . . . 14  |-  ( F : A -1-1-onto-> A  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
43coeq1d 5034 . . . . . . . . . . . . 13  |-  ( F : A -1-1-onto-> A  ->  ( ( `' F  o.  F
)  o.  G )  =  ( (  _I  |`  A )  o.  G
) )
5 f1of 5674 . . . . . . . . . . . . . 14  |-  ( G : A -1-1-onto-> A  ->  G : A
--> A )
6 fcoi2 5618 . . . . . . . . . . . . . 14  |-  ( G : A --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
75, 6syl 16 . . . . . . . . . . . . 13  |-  ( G : A -1-1-onto-> A  ->  ( (  _I  |`  A )  o.  G )  =  G )
84, 7sylan9eq 2488 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
92, 8syl5eqr 2482 . . . . . . . . . . 11  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
109difeq1d 3464 . . . . . . . . . 10  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( `' F  o.  ( F  o.  G
) )  \  _I  )  =  ( G  \  _I  ) )
1110dmeqd 5072 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  =  dom  ( G 
\  _I  ) )
1211adantr 452 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  =  dom  ( G 
\  _I  ) )
13 mvdco 27365 . . . . . . . . 9  |-  dom  (
( `' F  o.  ( F  o.  G
) )  \  _I  )  C_  ( dom  ( `' F  \  _I  )  u.  dom  ( ( F  o.  G )  \  _I  ) )
14 f1omvdcnv 27364 . . . . . . . . . . . 12  |-  ( F : A -1-1-onto-> A  ->  dom  ( `' F  \  _I  )  =  dom  ( F  \  _I  ) )
1514ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' F  \  _I  )  =  dom  ( F  \  _I  )
)
16 simprl 733 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( F  \  _I  )  C_  X )
1715, 16eqsstrd 3382 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' F  \  _I  )  C_  X )
18 simprr 734 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( F  o.  G )  \  _I  )  C_  X )
1917, 18unssd 3523 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  -> 
( dom  ( `' F  \  _I  )  u. 
dom  ( ( F  o.  G )  \  _I  ) )  C_  X
)
2013, 19syl5ss 3359 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( `' F  o.  ( F  o.  G
) )  \  _I  )  C_  X )
2112, 20eqsstr3d 3383 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( G  \  _I  )  C_  X )
2221expr 599 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( F 
\  _I  )  C_  X )  ->  ( dom  ( ( F  o.  G )  \  _I  )  C_  X  ->  dom  ( G  \  _I  )  C_  X ) )
2322con3d 127 . . . . 5  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( F 
\  _I  )  C_  X )  ->  ( -.  dom  ( G  \  _I  )  C_  X  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
2423expimpd 587 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
25 coass 5388 . . . . . . . . . . . . 13  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
26 f1ococnv2 5702 . . . . . . . . . . . . . . 15  |-  ( G : A -1-1-onto-> A  ->  ( G  o.  `' G )  =  (  _I  |`  A )
)
2726coeq2d 5035 . . . . . . . . . . . . . 14  |-  ( G : A -1-1-onto-> A  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  A ) ) )
28 f1of 5674 . . . . . . . . . . . . . . 15  |-  ( F : A -1-1-onto-> A  ->  F : A
--> A )
29 fcoi1 5617 . . . . . . . . . . . . . . 15  |-  ( F : A --> A  -> 
( F  o.  (  _I  |`  A ) )  =  F )
3028, 29syl 16 . . . . . . . . . . . . . 14  |-  ( F : A -1-1-onto-> A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
3127, 30sylan9eqr 2490 . . . . . . . . . . . . 13  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  ( F  o.  ( G  o.  `' G ) )  =  F )
3225, 31syl5eq 2480 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( F  o.  G
)  o.  `' G
)  =  F )
3332difeq1d 3464 . . . . . . . . . . 11  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( ( F  o.  G )  o.  `' G )  \  _I  )  =  ( F  \  _I  ) )
3433dmeqd 5072 . . . . . . . . . 10  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  =  dom  ( F 
\  _I  ) )
3534adantr 452 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  =  dom  ( F 
\  _I  ) )
36 mvdco 27365 . . . . . . . . . 10  |-  dom  (
( ( F  o.  G )  o.  `' G )  \  _I  )  C_  ( dom  (
( F  o.  G
)  \  _I  )  u.  dom  ( `' G  \  _I  ) )
37 simprr 734 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( F  o.  G )  \  _I  )  C_  X )
38 f1omvdcnv 27364 . . . . . . . . . . . . 13  |-  ( G : A -1-1-onto-> A  ->  dom  ( `' G  \  _I  )  =  dom  ( G  \  _I  ) )
3938ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' G  \  _I  )  =  dom  ( G  \  _I  )
)
40 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( G  \  _I  )  C_  X )
4139, 40eqsstrd 3382 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( `' G  \  _I  )  C_  X )
4237, 41unssd 3523 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  -> 
( dom  ( ( F  o.  G )  \  _I  )  u.  dom  ( `' G  \  _I  ) )  C_  X
)
4336, 42syl5ss 3359 . . . . . . . . 9  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( ( ( F  o.  G )  o.  `' G )  \  _I  )  C_  X )
4435, 43eqsstr3d 3383 . . . . . . . 8  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( G  \  _I  )  C_  X  /\  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )  ->  dom  ( F  \  _I  )  C_  X )
4544expr 599 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( G 
\  _I  )  C_  X )  ->  ( dom  ( ( F  o.  G )  \  _I  )  C_  X  ->  dom  ( F  \  _I  )  C_  X ) )
4645con3d 127 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  dom  ( G 
\  _I  )  C_  X )  ->  ( -.  dom  ( F  \  _I  )  C_  X  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4746expimpd 587 . . . . 5  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( G  \  _I  )  C_  X  /\  -.  dom  ( F 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4847ancomsd 441 . . . 4  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G 
\  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X ) )
4924, 48jaod 370 . . 3  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( ( dom  ( F  \  _I  )  C_  X  /\  -.  dom  ( G  \  _I  )  C_  X )  \/  ( -.  dom  ( F  \  _I  )  C_  X  /\  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )
501, 49syl5bi 209 . 2  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  ->  (
( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X )  ->  -.  dom  ( ( F  o.  G ) 
\  _I  )  C_  X ) )
51503impia 1150 1  |-  ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A  /\  ( dom  ( F  \  _I  )  C_  X  \/_  dom  ( G  \  _I  )  C_  X ) )  ->  -.  dom  ( ( F  o.  G )  \  _I  )  C_  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    \/_ wxo 1313    = wceq 1652    \ cdif 3317    u. cun 3318    C_ wss 3320    _I cid 4493   `'ccnv 4877   dom cdm 4878    |` cres 4880    o. ccom 4882   -->wf 5450   -1-1-onto->wf1o 5453
This theorem is referenced by:  f1omvdco3  27369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-xor 1314  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462
  Copyright terms: Public domain W3C validator