Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1opr Structured version   Unicode version

Theorem f1opr 26440
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
Distinct variable groups:    A, r,
s, t, u    B, r, s, t, u    F, r, s, t, u
Allowed substitution hints:    C( u, t, s, r)

Proof of Theorem f1opr
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 6007 . 2  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B ) ( ( F `  v )  =  ( F `  w )  ->  v  =  w ) ) )
2 fveq2 5731 . . . . . . . . 9  |-  ( v  =  <. r ,  s
>.  ->  ( F `  v )  =  ( F `  <. r ,  s >. )
)
3 df-ov 6087 . . . . . . . . 9  |-  ( r F s )  =  ( F `  <. r ,  s >. )
42, 3syl6eqr 2488 . . . . . . . 8  |-  ( v  =  <. r ,  s
>.  ->  ( F `  v )  =  ( r F s ) )
54eqeq1d 2446 . . . . . . 7  |-  ( v  =  <. r ,  s
>.  ->  ( ( F `
 v )  =  ( F `  w
)  <->  ( r F s )  =  ( F `  w ) ) )
6 eqeq1 2444 . . . . . . 7  |-  ( v  =  <. r ,  s
>.  ->  ( v  =  w  <->  <. r ,  s
>.  =  w )
)
75, 6imbi12d 313 . . . . . 6  |-  ( v  =  <. r ,  s
>.  ->  ( ( ( F `  v )  =  ( F `  w )  ->  v  =  w )  <->  ( (
r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w ) ) )
87ralbidv 2727 . . . . 5  |-  ( v  =  <. r ,  s
>.  ->  ( A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. w  e.  ( A  X.  B
) ( ( r F s )  =  ( F `  w
)  ->  <. r ,  s >.  =  w
) ) )
98ralxp 5019 . . . 4  |-  ( A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. r  e.  A  A. s  e.  B  A. w  e.  ( A  X.  B
) ( ( r F s )  =  ( F `  w
)  ->  <. r ,  s >.  =  w
) )
10 fveq2 5731 . . . . . . . . 9  |-  ( w  =  <. t ,  u >.  ->  ( F `  w )  =  ( F `  <. t ,  u >. ) )
11 df-ov 6087 . . . . . . . . 9  |-  ( t F u )  =  ( F `  <. t ,  u >. )
1210, 11syl6eqr 2488 . . . . . . . 8  |-  ( w  =  <. t ,  u >.  ->  ( F `  w )  =  ( t F u ) )
1312eqeq2d 2449 . . . . . . 7  |-  ( w  =  <. t ,  u >.  ->  ( ( r F s )  =  ( F `  w
)  <->  ( r F s )  =  ( t F u ) ) )
14 eqeq2 2447 . . . . . . . 8  |-  ( w  =  <. t ,  u >.  ->  ( <. r ,  s >.  =  w  <->  <. r ,  s >.  =  <. t ,  u >. ) )
15 vex 2961 . . . . . . . . 9  |-  r  e. 
_V
16 vex 2961 . . . . . . . . 9  |-  s  e. 
_V
1715, 16opth 4438 . . . . . . . 8  |-  ( <.
r ,  s >.  =  <. t ,  u >.  <-> 
( r  =  t  /\  s  =  u ) )
1814, 17syl6bb 254 . . . . . . 7  |-  ( w  =  <. t ,  u >.  ->  ( <. r ,  s >.  =  w  <-> 
( r  =  t  /\  s  =  u ) ) )
1913, 18imbi12d 313 . . . . . 6  |-  ( w  =  <. t ,  u >.  ->  ( ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) ) )
2019ralxp 5019 . . . . 5  |-  ( A. w  e.  ( A  X.  B ) ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  A. t  e.  A  A. u  e.  B  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) )
21202ralbii 2733 . . . 4  |-  ( A. r  e.  A  A. s  e.  B  A. w  e.  ( A  X.  B ) ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) )
229, 21bitri 242 . . 3  |-  ( A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  ( (
r F s )  =  ( t F u )  ->  (
r  =  t  /\  s  =  u )
) )
2322anbi2i 677 . 2  |-  ( ( F : ( A  X.  B ) --> C  /\  A. v  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w ) )  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
241, 23bitri 242 1  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653   A.wral 2707   <.cop 3819    X. cxp 4879   -->wf 5453   -1-1->wf1 5454   ` cfv 5457  (class class class)co 6084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fv 5465  df-ov 6087
  Copyright terms: Public domain W3C validator