MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opwfi Unicode version

Theorem f1opwfi 7159
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
f1opwfi  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Distinct variable groups:    A, b    B, b    F, b

Proof of Theorem f1opwfi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . 2  |-  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F
" b ) )  =  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) )
2 imassrn 5025 . . . . . 6  |-  ( F
" b )  C_  ran  F
3 f1ofo 5479 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
4 forn 5454 . . . . . . 7  |-  ( F : A -onto-> B  ->  ran  F  =  B )
53, 4syl 15 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  F  =  B )
62, 5syl5sseq 3226 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( F " b )  C_  B
)
76adantr 451 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  C_  B
)
8 inss2 3390 . . . . . . 7  |-  ( ~P A  i^i  Fin )  C_ 
Fin
9 simpr 447 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  ( ~P A  i^i  Fin ) )
108, 9sseldi 3178 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  e.  Fin )
11 f1ofun 5474 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
1211adantr 451 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  Fun  F )
13 inss1 3389 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
~P A
1413sseli 3176 . . . . . . . . . 10  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  e.  ~P A )
15 elpwi 3633 . . . . . . . . . 10  |-  ( b  e.  ~P A  -> 
b  C_  A )
1614, 15syl 15 . . . . . . . . 9  |-  ( b  e.  ( ~P A  i^i  Fin )  ->  b  C_  A )
1716adantl 452 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  A
)
18 f1odm 5476 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
1918adantr 451 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  dom  F  =  A )
2017, 19sseqtr4d 3215 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  b  C_  dom  F )
21 fores 5460 . . . . . . 7  |-  ( ( Fun  F  /\  b  C_ 
dom  F )  -> 
( F  |`  b
) : b -onto-> ( F " b ) )
2212, 20, 21syl2anc 642 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  b ) : b
-onto-> ( F " b
) )
23 fofi 7142 . . . . . 6  |-  ( ( b  e.  Fin  /\  ( F  |`  b ) : b -onto-> ( F
" b ) )  ->  ( F "
b )  e.  Fin )
2410, 22, 23syl2anc 642 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  Fin )
25 elpwg 3632 . . . . 5  |-  ( ( F " b )  e.  Fin  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
2624, 25syl 15 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F
" b )  e. 
~P B  <->  ( F " b )  C_  B
) )
277, 26mpbird 223 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ~P B )
28 elin 3358 . . 3  |-  ( ( F " b )  e.  ( ~P B  i^i  Fin )  <->  ( ( F " b )  e. 
~P B  /\  ( F " b )  e. 
Fin ) )
2927, 24, 28sylanbrc 645 . 2  |-  ( ( F : A -1-1-onto-> B  /\  b  e.  ( ~P A  i^i  Fin ) )  ->  ( F "
b )  e.  ( ~P B  i^i  Fin ) )
30 imassrn 5025 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
31 dfdm4 4872 . . . . . . 7  |-  dom  F  =  ran  `' F
3231, 18syl5eqr 2329 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  ran  `' F  =  A )
3330, 32syl5sseq 3226 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  ( `' F " a )  C_  A )
3433adantr 451 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  C_  A
)
35 inss2 3390 . . . . . . 7  |-  ( ~P B  i^i  Fin )  C_ 
Fin
36 simpr 447 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ( ~P B  i^i  Fin ) )
3735, 36sseldi 3178 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  Fin )
38 dff1o3 5478 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  <->  ( F : A -onto-> B  /\  Fun  `' F ) )
3938simprbi 450 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  Fun  `' F
)
4039adantr 451 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  Fun  `' F
)
41 inss1 3389 . . . . . . . . . . 11  |-  ( ~P B  i^i  Fin )  C_ 
~P B
4241sseli 3176 . . . . . . . . . 10  |-  ( a  e.  ( ~P B  i^i  Fin )  ->  a  e.  ~P B )
4342adantl 452 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  e.  ~P B )
44 elpwi 3633 . . . . . . . . 9  |-  ( a  e.  ~P B  -> 
a  C_  B )
4543, 44syl 15 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  B
)
46 f1ocnv 5485 . . . . . . . . . 10  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
4746adantr 451 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  `' F : B
-1-1-onto-> A )
48 f1odm 5476 . . . . . . . . 9  |-  ( `' F : B -1-1-onto-> A  ->  dom  `' F  =  B
)
4947, 48syl 15 . . . . . . . 8  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  dom  `' F  =  B )
5045, 49sseqtr4d 3215 . . . . . . 7  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  a  C_  dom  `' F )
51 fores 5460 . . . . . . 7  |-  ( ( Fun  `' F  /\  a  C_  dom  `' F
)  ->  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )
5240, 50, 51syl2anc 642 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F  |`  a ) : a
-onto-> ( `' F "
a ) )
53 fofi 7142 . . . . . 6  |-  ( ( a  e.  Fin  /\  ( `' F  |`  a ) : a -onto-> ( `' F " a ) )  ->  ( `' F " a )  e. 
Fin )
5437, 52, 53syl2anc 642 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  Fin )
55 elpwg 3632 . . . . 5  |-  ( ( `' F " a )  e.  Fin  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
5654, 55syl 15 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
5734, 56mpbird 223 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ~P A )
58 elin 3358 . . 3  |-  ( ( `' F " a )  e.  ( ~P A  i^i  Fin )  <->  ( ( `' F " a )  e.  ~P A  /\  ( `' F " a )  e.  Fin ) )
5957, 54, 58sylanbrc 645 . 2  |-  ( ( F : A -1-1-onto-> B  /\  a  e.  ( ~P B  i^i  Fin ) )  ->  ( `' F " a )  e.  ( ~P A  i^i  Fin ) )
6014, 42anim12i 549 . . 3  |-  ( ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin )
)  ->  ( b  e.  ~P A  /\  a  e.  ~P B ) )
6144adantl 452 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
62 foimacnv 5490 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
633, 61, 62syl2an 463 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( F " ( `' F " a ) )  =  a )
6463eqcomd 2288 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
a  =  ( F
" ( `' F " a ) ) )
65 imaeq2 5008 . . . . . 6  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
6665eqeq2d 2294 . . . . 5  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
6764, 66syl5ibrcom 213 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  ->  a  =  ( F " b ) ) )
68 f1of1 5471 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
6915adantr 451 . . . . . . 7  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
70 f1imacnv 5489 . . . . . . 7  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
7168, 69, 70syl2an 463 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( `' F "
( F " b
) )  =  b )
7271eqcomd 2288 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
b  =  ( `' F " ( F
" b ) ) )
73 imaeq2 5008 . . . . . 6  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
7473eqeq2d 2294 . . . . 5  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
7572, 74syl5ibrcom 213 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( a  =  ( F " b )  ->  b  =  ( `' F " a ) ) )
7667, 75impbid 183 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
7760, 76sylan2 460 . 2  |-  ( ( F : A -1-1-onto-> B  /\  ( b  e.  ( ~P A  i^i  Fin )  /\  a  e.  ( ~P B  i^i  Fin ) ) )  -> 
( b  =  ( `' F " a )  <-> 
a  =  ( F
" b ) ) )
781, 29, 59, 77f1o2d 6069 1  |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ( ~P A  i^i  Fin )  |->  ( F "
b ) ) : ( ~P A  i^i  Fin ) -1-1-onto-> ( ~P B  i^i  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   ~Pcpw 3625    e. cmpt 4077   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   Fincfn 6863
This theorem is referenced by:  fictb  7871  ackbijnn  12286  tsmsf1o  17827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867
  Copyright terms: Public domain W3C validator