MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orel Unicode version

Theorem f1orel 5475
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel  |-  ( F : A -1-1-onto-> B  ->  Rel  F )

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 5474 . 2  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
2 funrel 5272 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 15 1  |-  ( F : A -1-1-onto-> B  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4694   Fun wfun 5249   -1-1-onto->wf1o 5254
This theorem is referenced by:  f1ococnv1  5502  isores1  5831  weisoeq2  5854  ssenen  7035  cantnffval2  7397  cmphaushmeo  17491  f1ocan2fv  26395  ltrncnvnid  30316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-f1o 5262
  Copyright terms: Public domain W3C validator