MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ores Unicode version

Theorem f1ores 5487
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
f1ores  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )

Proof of Theorem f1ores
StepHypRef Expression
1 f1ssres 5444 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
2 f1f1orn 5483 . . 3  |-  ( ( F  |`  C ) : C -1-1-> B  ->  ( F  |`  C ) : C -1-1-onto-> ran  ( F  |`  C ) )
31, 2syl 15 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ran  ( F  |`  C ) )
4 df-ima 4702 . . 3  |-  ( F
" C )  =  ran  ( F  |`  C )
5 f1oeq3 5465 . . 3  |-  ( ( F " C )  =  ran  ( F  |`  C )  ->  (
( F  |`  C ) : C -1-1-onto-> ( F " C
)  <->  ( F  |`  C ) : C -1-1-onto-> ran  ( F  |`  C ) ) )
64, 5ax-mp 8 . 2  |-  ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  <->  ( F  |`  C ) : C -1-1-onto-> ran  ( F  |`  C ) )
73, 6sylibr 203 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    C_ wss 3152   ran crn 4690    |` cres 4691   "cima 4692   -1-1->wf1 5252   -1-1-onto->wf1o 5254
This theorem is referenced by:  f1imacnv  5489  isores3  5832  isoini2  5836  f1imaeng  6921  f1imaen2g  6922  domunsncan  6962  php3  7047  ssfi  7083  infdifsn  7357  infxpenlem  7641  ackbij2lem2  7866  fin1a2lem6  8031  grothomex  8451  fsumss  12198  ackbijnn  12286  unbenlem  12955  eqgen  14670  gsumval3  15191  gsumzaddlem  15203  coe1mul2lem2  16345  tsmsf1o  17827  ovoliunlem1  18861  dvcnvrelem2  19365  logf1o2  19997  dvlog  19998  adjbd1o  22665  rinvf1o  23038  ballotlemfrc  23085  indf1ofs  23609  erdsze2lem2  23735  eupares  23899  ismtyres  26532  pwfi2f1o  27260  lindsmm  27298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
  Copyright terms: Public domain W3C validator