MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orescnv Structured version   Unicode version

Theorem f1orescnv 5693
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' F  |`  P ) : P -1-1-onto-> R )

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 5690 . . 3  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  `' ( F  |`  R ) : P -1-1-onto-> R )
21adantl 454 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  `' ( F  |`  R ) : P -1-1-onto-> R )
3 funcnvres 5525 . . . 4  |-  ( Fun  `' F  ->  `' ( F  |`  R )  =  ( `' F  |`  ( F " R
) ) )
4 df-ima 4894 . . . . . 6  |-  ( F
" R )  =  ran  ( F  |`  R )
5 dff1o5 5686 . . . . . . 7  |-  ( ( F  |`  R ) : R -1-1-onto-> P  <->  ( ( F  |`  R ) : R -1-1-> P  /\  ran  ( F  |`  R )  =  P ) )
65simprbi 452 . . . . . 6  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ran  ( F  |`  R )  =  P )
74, 6syl5eq 2482 . . . . 5  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ( F " R )  =  P )
87reseq2d 5149 . . . 4  |-  ( ( F  |`  R ) : R -1-1-onto-> P  ->  ( `' F  |`  ( F " R ) )  =  ( `' F  |`  P ) )
93, 8sylan9eq 2490 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  `' ( F  |`  R )  =  ( `' F  |`  P ) )
10 f1oeq1 5668 . . 3  |-  ( `' ( F  |`  R )  =  ( `' F  |`  P )  ->  ( `' ( F  |`  R ) : P -1-1-onto-> R  <->  ( `' F  |`  P ) : P -1-1-onto-> R ) )
119, 10syl 16 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' ( F  |`  R ) : P -1-1-onto-> R  <->  ( `' F  |`  P ) : P -1-1-onto-> R ) )
122, 11mpbid 203 1  |-  ( ( Fun  `' F  /\  ( F  |`  R ) : R -1-1-onto-> P )  ->  ( `' F  |`  P ) : P -1-1-onto-> R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653   `'ccnv 4880   ran crn 4882    |` cres 4883   "cima 4884   Fun wfun 5451   -1-1->wf1 5454   -1-1-onto->wf1o 5456
This theorem is referenced by:  relogf1o  20469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464
  Copyright terms: Public domain W3C validator