Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orn Structured version   Unicode version

Theorem f1orn 5686
 Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 5681 . 2
2 eqid 2438 . . 3
3 df-3an 939 . . 3
42, 3mpbiran2 887 . 2
51, 4bitri 242 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360   w3a 937   wceq 1653  ccnv 4879   crn 4881   wfun 5450   wfn 5451  wf1o 5455 This theorem is referenced by:  f1f1orn  5687  infdifsn  7613  efopnlem2  20550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-in 3329  df-ss 3336  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463
 Copyright terms: Public domain W3C validator