MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osng Unicode version

Theorem f1osng 5656
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )

Proof of Theorem f1osng
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3768 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
2 f1oeq2 5606 . . . 4  |-  ( { a }  =  { A }  ->  ( {
<. a ,  b >. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
31, 2syl 16 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. a ,  b >. } : { A } -1-1-onto-> { b } ) )
4 opeq1 3926 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
54sneqd 3770 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
6 f1oeq1 5605 . . . 4  |-  ( {
<. a ,  b >. }  =  { <. A , 
b >. }  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
75, 6syl 16 . . 3  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
83, 7bitrd 245 . 2  |-  ( a  =  A  ->  ( { <. a ,  b
>. } : { a } -1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { b } ) )
9 sneq 3768 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
10 f1oeq3 5607 . . . 4  |-  ( { b }  =  { B }  ->  ( {
<. A ,  b >. } : { A } -1-1-onto-> {
b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
119, 10syl 16 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A , 
b >. } : { A } -1-1-onto-> { B } ) )
12 opeq2 3927 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1312sneqd 3770 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
14 f1oeq1 5605 . . . 4  |-  ( {
<. A ,  b >. }  =  { <. A ,  B >. }  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1513, 14syl 16 . . 3  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { B }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
1611, 15bitrd 245 . 2  |-  ( b  =  B  ->  ( { <. A ,  b
>. } : { A }
-1-1-onto-> { b }  <->  { <. A ,  B >. } : { A } -1-1-onto-> { B } ) )
17 vex 2902 . . 3  |-  a  e. 
_V
18 vex 2902 . . 3  |-  b  e. 
_V
1917, 18f1osn 5655 . 2  |-  { <. a ,  b >. } : { a } -1-1-onto-> { b }
208, 16, 19vtocl2g 2958 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {csn 3757   <.cop 3760   -1-1-onto->wf1o 5393
This theorem is referenced by:  f1oprswap  5657  f1oprg  5658  fsnunf  5870  fseqenlem1  7838  canthp1lem2  8461  1fv  11050  s1cl  11682  sumsn  12461  vdwlem8  13283  gsumws1  14712  dprdsn  15521  frgpcyg  16777  pt1hmeo  17759  umgra1  21228  uslgra1  21259  usgra1  21260  vdgr1d  21522  vdgr1b  21523  vdgr1a  21525  eupa0  21544  eupap1  21546  prodsn  25065  ralxpmap  26433  mapfzcons  26463  enfixsn  26926  sumsnd  27365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401
  Copyright terms: Public domain W3C validator