Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1otrspeq Unicode version

Theorem f1otrspeq 27493
Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1otrspeq  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  F  =  G )

Proof of Theorem f1otrspeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofn 5489 . . 3  |-  ( F : A -1-1-onto-> A  ->  F  Fn  A )
21ad2antrr 706 . 2  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  F  Fn  A )
3 f1ofn 5489 . . 3  |-  ( G : A -1-1-onto-> A  ->  G  Fn  A )
43ad2antlr 707 . 2  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  G  Fn  A )
5 1onn 6653 . . . . . . . 8  |-  1o  e.  om
65a1i 10 . . . . . . 7  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  1o  e.  om )
7 simplrr 737 . . . . . . . 8  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  dom  ( G  \  _I  )  =  dom  ( F  \  _I  )
)
8 simplrl 736 . . . . . . . . 9  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  dom  ( F  \  _I  )  ~~  2o )
9 df-2o 6496 . . . . . . . . 9  |-  2o  =  suc  1o
108, 9syl6breq 4078 . . . . . . . 8  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  dom  ( F  \  _I  )  ~~  suc  1o )
117, 10eqbrtrd 4059 . . . . . . 7  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  dom  ( G  \  _I  )  ~~  suc  1o )
12 simpr 447 . . . . . . 7  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  x  e.  dom  ( G  \  _I  )
)
13 dif1en 7107 . . . . . . 7  |-  ( ( 1o  e.  om  /\  dom  ( G  \  _I  )  ~~  suc  1o  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( dom  ( G  \  _I  )  \  { x } ) 
~~  1o )
146, 11, 12, 13syl3anc 1182 . . . . . 6  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( dom  ( G  \  _I  )  \  { x } ) 
~~  1o )
15 euen1b 6948 . . . . . . 7  |-  ( ( dom  ( G  \  _I  )  \  { x } )  ~~  1o  <->  E! y  y  e.  ( dom  ( G  \  _I  )  \  { x } ) )
16 eumo 2196 . . . . . . 7  |-  ( E! y  y  e.  ( dom  ( G  \  _I  )  \  { x } )  ->  E* y  y  e.  ( dom  ( G  \  _I  )  \  { x }
) )
1715, 16sylbi 187 . . . . . 6  |-  ( ( dom  ( G  \  _I  )  \  { x } )  ~~  1o  ->  E* y  y  e.  ( dom  ( G 
\  _I  )  \  { x } ) )
1814, 17syl 15 . . . . 5  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  E* y  y  e.  ( dom  ( G  \  _I  )  \  { x } ) )
19 f1omvdmvd 27489 . . . . . . . . 9  |-  ( ( F : A -1-1-onto-> A  /\  x  e.  dom  ( F 
\  _I  ) )  ->  ( F `  x )  e.  ( dom  ( F  \  _I  )  \  { x } ) )
2019ex 423 . . . . . . . 8  |-  ( F : A -1-1-onto-> A  ->  ( x  e.  dom  ( F  \  _I  )  ->  ( F `
 x )  e.  ( dom  ( F 
\  _I  )  \  { x } ) ) )
2120ad2antrr 706 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  -> 
( x  e.  dom  ( F  \  _I  )  ->  ( F `  x
)  e.  ( dom  ( F  \  _I  )  \  { x }
) ) )
22 eleq2 2357 . . . . . . . 8  |-  ( dom  ( G  \  _I  )  =  dom  ( F 
\  _I  )  -> 
( x  e.  dom  ( G  \  _I  )  <->  x  e.  dom  ( F 
\  _I  ) ) )
2322ad2antll 709 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  -> 
( x  e.  dom  ( G  \  _I  )  <->  x  e.  dom  ( F 
\  _I  ) ) )
24 difeq1 3300 . . . . . . . . 9  |-  ( dom  ( G  \  _I  )  =  dom  ( F 
\  _I  )  -> 
( dom  ( G  \  _I  )  \  {
x } )  =  ( dom  ( F 
\  _I  )  \  { x } ) )
2524eleq2d 2363 . . . . . . . 8  |-  ( dom  ( G  \  _I  )  =  dom  ( F 
\  _I  )  -> 
( ( F `  x )  e.  ( dom  ( G  \  _I  )  \  { x } )  <->  ( F `  x )  e.  ( dom  ( F  \  _I  )  \  { x } ) ) )
2625ad2antll 709 . . . . . . 7  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  -> 
( ( F `  x )  e.  ( dom  ( G  \  _I  )  \  { x } )  <->  ( F `  x )  e.  ( dom  ( F  \  _I  )  \  { x } ) ) )
2721, 23, 263imtr4d 259 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  -> 
( x  e.  dom  ( G  \  _I  )  ->  ( F `  x
)  e.  ( dom  ( G  \  _I  )  \  { x }
) ) )
2827imp 418 . . . . 5  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( F `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) )
29 simplr 731 . . . . . 6  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  G : A -1-1-onto-> A )
30 f1omvdmvd 27489 . . . . . 6  |-  ( ( G : A -1-1-onto-> A  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( G `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) )
3129, 30sylan 457 . . . . 5  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( G `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) )
32 fvex 5555 . . . . . . 7  |-  ( F `
 x )  e. 
_V
33 fvex 5555 . . . . . . 7  |-  ( G `
 x )  e. 
_V
3432, 33pm3.2i 441 . . . . . 6  |-  ( ( F `  x )  e.  _V  /\  ( G `  x )  e.  _V )
35 eleq1 2356 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
y  e.  ( dom  ( G  \  _I  )  \  { x }
)  <->  ( F `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) ) )
36 eleq1 2356 . . . . . . 7  |-  ( y  =  ( G `  x )  ->  (
y  e.  ( dom  ( G  \  _I  )  \  { x }
)  <->  ( G `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) ) )
3735, 36moi 2961 . . . . . 6  |-  ( ( ( ( F `  x )  e.  _V  /\  ( G `  x
)  e.  _V )  /\  E* y  y  e.  ( dom  ( G 
\  _I  )  \  { x } )  /\  ( ( F `
 x )  e.  ( dom  ( G 
\  _I  )  \  { x } )  /\  ( G `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) ) )  ->  ( F `  x )  =  ( G `  x ) )
3834, 37mp3an1 1264 . . . . 5  |-  ( ( E* y  y  e.  ( dom  ( G 
\  _I  )  \  { x } )  /\  ( ( F `
 x )  e.  ( dom  ( G 
\  _I  )  \  { x } )  /\  ( G `  x )  e.  ( dom  ( G  \  _I  )  \  { x } ) ) )  ->  ( F `  x )  =  ( G `  x ) )
3918, 28, 31, 38syl12anc 1180 . . . 4  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  dom  ( G 
\  _I  ) )  ->  ( F `  x )  =  ( G `  x ) )
4039adantlr 695 . . 3  |-  ( ( ( ( ( F : A -1-1-onto-> A  /\  G : A
-1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  /\  x  e.  dom  ( G  \  _I  )
)  ->  ( F `  x )  =  ( G `  x ) )
41 simplrr 737 . . . . . . . 8  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  dom  ( G  \  _I  )  =  dom  ( F  \  _I  )
)
4241eleq2d 2363 . . . . . . 7  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( x  e.  dom  ( G  \  _I  )  <->  x  e.  dom  ( F 
\  _I  ) ) )
43 fnelnfp 26860 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x  e.  dom  ( F  \  _I  )  <->  ( F `  x )  =/=  x ) )
442, 43sylan 457 . . . . . . 7  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( x  e.  dom  ( F  \  _I  )  <->  ( F `  x )  =/=  x ) )
4542, 44bitrd 244 . . . . . 6  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( x  e.  dom  ( G  \  _I  )  <->  ( F `  x )  =/=  x ) )
4645necon2bbid 2517 . . . . 5  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( ( F `  x )  =  x  <->  -.  x  e.  dom  ( G  \  _I  )
) )
4746biimpar 471 . . . 4  |-  ( ( ( ( ( F : A -1-1-onto-> A  /\  G : A
-1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  /\  -.  x  e.  dom  ( G  \  _I  )
)  ->  ( F `  x )  =  x )
48 fnelnfp 26860 . . . . . . 7  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( x  e.  dom  ( G  \  _I  )  <->  ( G `  x )  =/=  x ) )
494, 48sylan 457 . . . . . 6  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( x  e.  dom  ( G  \  _I  )  <->  ( G `  x )  =/=  x ) )
5049necon2bbid 2517 . . . . 5  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( ( G `  x )  =  x  <->  -.  x  e.  dom  ( G  \  _I  )
) )
5150biimpar 471 . . . 4  |-  ( ( ( ( ( F : A -1-1-onto-> A  /\  G : A
-1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  /\  -.  x  e.  dom  ( G  \  _I  )
)  ->  ( G `  x )  =  x )
5247, 51eqtr4d 2331 . . 3  |-  ( ( ( ( ( F : A -1-1-onto-> A  /\  G : A
-1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  /\  -.  x  e.  dom  ( G  \  _I  )
)  ->  ( F `  x )  =  ( G `  x ) )
5340, 52pm2.61dan 766 . 2  |-  ( ( ( ( F : A
-1-1-onto-> A  /\  G : A -1-1-onto-> A
)  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G  \  _I  )  =  dom  ( F  \  _I  ) ) )  /\  x  e.  A )  ->  ( F `  x
)  =  ( G `
 x ) )
542, 4, 53eqfnfvd 5641 1  |-  ( ( ( F : A -1-1-onto-> A  /\  G : A -1-1-onto-> A )  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  dom  ( G 
\  _I  )  =  dom  ( F  \  _I  ) ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E!weu 2156   E*wmo 2157    =/= wne 2459   _Vcvv 2801    \ cdif 3162   {csn 3653   class class class wbr 4039    _I cid 4320   suc csuc 4410   omcom 4672   dom cdm 4705    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271   1oc1o 6488   2oc2o 6489    ~~ cen 6876
This theorem is referenced by:  pmtrfb  27509  psgnunilem1  27519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-fin 6883
  Copyright terms: Public domain W3C validator