MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Unicode version

Theorem f1ssres 5444
Description: A function that is one-to-one is also one-to-one on some aubset of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5437 . . 3  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fssres 5408 . . 3  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
31, 2sylan 457 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
4 df-f1 5260 . . . . 5  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
54simprbi 450 . . . 4  |-  ( F : A -1-1-> B  ->  Fun  `' F )
6 funres11 5320 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  C ) )
75, 6syl 15 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' ( F  |`  C ) )
87adantr 451 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' ( F  |`  C ) )
9 df-f1 5260 . 2  |-  ( ( F  |`  C ) : C -1-1-> B  <->  ( ( F  |`  C ) : C --> B  /\  Fun  `' ( F  |`  C )
) )
103, 8, 9sylanbrc 645 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    C_ wss 3152   `'ccnv 4688    |` cres 4691   Fun wfun 5249   -->wf 5251   -1-1->wf1 5252
This theorem is referenced by:  f1ores  5487  oacomf1olem  6562  pwfseqlem5  8285  hashf1lem2  11394  conjsubgen  14715  sylow1lem2  14910  sylow2blem1  14931  usgrares  28115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260
  Copyright terms: Public domain W3C validator