MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fac3 Structured version   Unicode version

Theorem fac3 11566
Description: The factorial of 3. (Contributed by NM, 17-Mar-2005.)
Assertion
Ref Expression
fac3  |-  ( ! `
 3 )  =  6

Proof of Theorem fac3
StepHypRef Expression
1 df-3 10052 . . 3  |-  3  =  ( 2  +  1 )
21fveq2i 5724 . 2  |-  ( ! `
 3 )  =  ( ! `  (
2  +  1 ) )
3 2nn0 10231 . . 3  |-  2  e.  NN0
4 facp1 11564 . . 3  |-  ( 2  e.  NN0  ->  ( ! `
 ( 2  +  1 ) )  =  ( ( ! ` 
2 )  x.  (
2  +  1 ) ) )
53, 4ax-mp 8 . 2  |-  ( ! `
 ( 2  +  1 ) )  =  ( ( ! ` 
2 )  x.  (
2  +  1 ) )
6 fac2 11565 . . . 4  |-  ( ! `
 2 )  =  2
7 2p1e3 10096 . . . 4  |-  ( 2  +  1 )  =  3
86, 7oveq12i 6086 . . 3  |-  ( ( ! `  2 )  x.  ( 2  +  1 ) )  =  ( 2  x.  3 )
9 2cn 10063 . . . 4  |-  2  e.  CC
10 3cn 10065 . . . 4  |-  3  e.  CC
119, 10mulcomi 9089 . . 3  |-  ( 2  x.  3 )  =  ( 3  x.  2 )
12 3t2e6 10121 . . 3  |-  ( 3  x.  2 )  =  6
138, 11, 123eqtri 2460 . 2  |-  ( ( ! `  2 )  x.  ( 2  +  1 ) )  =  6
142, 5, 133eqtri 2460 1  |-  ( ! `
 3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   ` cfv 5447  (class class class)co 6074   1c1 8984    + caddc 8986    x. cmul 8988   2c2 10042   3c3 10043   6c6 10046   NN0cn0 10214   !cfa 11559
This theorem is referenced by:  fac4  11567  ef4p  12707  ef01bndlem  12778  4bc2eq6  25197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-n0 10215  df-z 10276  df-uz 10482  df-seq 11317  df-fac 11560
  Copyright terms: Public domain W3C validator