MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facdiv Unicode version

Theorem facdiv 11316
Description: A natural number divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )

Proof of Theorem facdiv
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4043 . . . . 5  |-  ( j  =  0  ->  ( N  <_  j  <->  N  <_  0 ) )
2 fveq2 5541 . . . . . . 7  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
32oveq1d 5889 . . . . . 6  |-  ( j  =  0  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 0 )  /  N ) )
43eleq1d 2362 . . . . 5  |-  ( j  =  0  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  0 )  /  N )  e.  NN ) )
51, 4imbi12d 311 . . . 4  |-  ( j  =  0  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  0  ->  ( ( ! ` 
0 )  /  N
)  e.  NN ) ) )
65imbi2d 307 . . 3  |-  ( j  =  0  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  0  ->  ( ( ! `  0 )  /  N )  e.  NN ) ) ) )
7 breq2 4043 . . . . 5  |-  ( j  =  k  ->  ( N  <_  j  <->  N  <_  k ) )
8 fveq2 5541 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98oveq1d 5889 . . . . . 6  |-  ( j  =  k  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 k )  /  N ) )
109eleq1d 2362 . . . . 5  |-  ( j  =  k  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  k )  /  N )  e.  NN ) )
117, 10imbi12d 311 . . . 4  |-  ( j  =  k  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN ) ) )
1211imbi2d 307 . . 3  |-  ( j  =  k  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k )  /  N )  e.  NN ) ) ) )
13 breq2 4043 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  <_  j  <->  N  <_  ( k  +  1 ) ) )
14 fveq2 5541 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1514oveq1d 5889 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 ( k  +  1 ) )  /  N ) )
1615eleq1d 2362 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) )
1713, 16imbi12d 311 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  (
k  +  1 )  ->  ( ( ! `
 ( k  +  1 ) )  /  N )  e.  NN ) ) )
1817imbi2d 307 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
19 breq2 4043 . . . . 5  |-  ( j  =  M  ->  ( N  <_  j  <->  N  <_  M ) )
20 fveq2 5541 . . . . . . 7  |-  ( j  =  M  ->  ( ! `  j )  =  ( ! `  M ) )
2120oveq1d 5889 . . . . . 6  |-  ( j  =  M  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 M )  /  N ) )
2221eleq1d 2362 . . . . 5  |-  ( j  =  M  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  M )  /  N )  e.  NN ) )
2319, 22imbi12d 311 . . . 4  |-  ( j  =  M  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  M  ->  ( ( ! `  M )  /  N
)  e.  NN ) ) )
2423imbi2d 307 . . 3  |-  ( j  =  M  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  M  ->  ( ( ! `  M )  /  N )  e.  NN ) ) ) )
25 nngt0 9791 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
26 0re 8854 . . . . . 6  |-  0  e.  RR
27 nnre 9769 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
28 ltnle 8918 . . . . . 6  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  <->  -.  N  <_  0 ) )
2926, 27, 28sylancr 644 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  <->  -.  N  <_  0 ) )
3025, 29mpbid 201 . . . 4  |-  ( N  e.  NN  ->  -.  N  <_  0 )
3130pm2.21d 98 . . 3  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
( ! `  0
)  /  N )  e.  NN ) )
32 peano2nn0 10020 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332nn0red 10035 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
34 leloe 8924 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( N  <_ 
( k  +  1 )  <->  ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
3527, 33, 34syl2an 463 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  <-> 
( N  <  (
k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
36 nnnn0 9988 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 nn0leltp1 10091 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
3836, 37sylan 457 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
39 nn0p1nn 10019 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
40 nnmulcl 9785 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ( ! `  k )  /  N )  x.  ( k  +  1 ) )  e.  NN )
4139, 40sylan2 460 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN )
4241expcom 424 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ( ( ! `  k
)  /  N )  e.  NN  ->  (
( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
4342adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN ) )
44 faccl 11314 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544nncnd 9778 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
4645adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
4732nn0cnd 10036 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
4847adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
49 nncn 9770 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  e.  CC )
50 nnne0 9794 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  N  =/=  0 )
5149, 50jca 518 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
5251adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  e.  CC  /\  N  =/=  0 ) )
53 div23 9459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ! `  k
)  e.  CC  /\  ( k  +  1 )  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) ) )
5446, 48, 52, 53syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  =  ( ( ( ! `  k
)  /  N )  x.  ( k  +  1 ) ) )
5554eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN  <->  ( ( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
5643, 55sylibrd 225 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) )
5756imim2d 48 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( N  <_ 
k  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5857com23 72 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  ->  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5938, 58sylbird 226 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6049adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  e.  CC )
6150adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  =/=  0 )
6246, 60, 61divcan4d 9558 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  =  ( ! `
 k ) )
6344adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
6462, 63eqeltrd 2370 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN )
65 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( k  +  1 )  ->  (
( ! `  k
)  x.  N )  =  ( ( ! `
 k )  x.  ( k  +  1 ) ) )
6665oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( N  =  ( k  +  1 )  ->  (
( ( ! `  k )  x.  N
)  /  N )  =  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N ) )
6766eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( N  =  ( k  +  1 )  ->  (
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6864, 67syl5ibcom 211 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6968a1dd 42 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
7059, 69jaod 369 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) )  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
7135, 70sylbid 206 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
7271ex 423 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( N  <_  ( k  +  1 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7372com34 77 . . . . . . . 8  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( ( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7473com12 27 . . . . . . 7  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7574imp4d 575 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ( ! `  k )  x.  (
k  +  1 ) )  /  N )  e.  NN ) )
76 facp1 11309 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7776oveq1d 5889 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ! `  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
) )
7877eleq1d 2362 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( ! `  (
k  +  1 ) )  /  N )  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
7975, 78sylibrd 225 . . . . 5  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ! `  (
k  +  1 ) )  /  N )  e.  NN ) )
8079exp4d 592 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
8180a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k
)  /  N )  e.  NN ) )  ->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
826, 12, 18, 24, 31, 81nn0ind 10124 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN  ->  ( N  <_  M  ->  (
( ! `  M
)  /  N )  e.  NN ) ) )
83823imp 1145 1  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   NNcn 9762   NN0cn0 9981   !cfa 11304
This theorem is referenced by:  facndiv  11317  eirrlem  12498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063  df-fac 11305
  Copyright terms: Public domain W3C validator