MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem1 Unicode version

Theorem faclbnd4lem1 11306
Description: Lemma for faclbnd4 11310. Prepare the induction step. (Contributed by NM, 20-Dec-2005.)
Hypotheses
Ref Expression
faclbnd4lem1.1  |-  N  e.  NN
faclbnd4lem1.2  |-  K  e. 
NN0
faclbnd4lem1.3  |-  M  e. 
NN0
Assertion
Ref Expression
faclbnd4lem1  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd4lem1
StepHypRef Expression
1 faclbnd4lem1.1 . . . 4  |-  N  e.  NN
21nnrei 9755 . . 3  |-  N  e.  RR
3 1re 8837 . . 3  |-  1  e.  RR
4 lelttric 8927 . . 3  |-  ( ( N  e.  RR  /\  1  e.  RR )  ->  ( N  <_  1  \/  1  <  N ) )
52, 3, 4mp2an 653 . 2  |-  ( N  <_  1  \/  1  <  N )
6 nnge1 9772 . . . . . . 7  |-  ( N  e.  NN  ->  1  <_  N )
71, 6ax-mp 8 . . . . . 6  |-  1  <_  N
82, 3letri3i 8934 . . . . . 6  |-  ( N  =  1  <->  ( N  <_  1  /\  1  <_  N ) )
97, 8mpbiran2 885 . . . . 5  |-  ( N  =  1  <->  N  <_  1 )
10 0le1 9297 . . . . . . . . . 10  |-  0  <_  1
113, 10pm3.2i 441 . . . . . . . . 9  |-  ( 1  e.  RR  /\  0  <_  1 )
12 2re 9815 . . . . . . . . . 10  |-  2  e.  RR
13 faclbnd4lem1.2 . . . . . . . . . . . . 13  |-  K  e. 
NN0
14 1nn 9757 . . . . . . . . . . . . 13  |-  1  e.  NN
15 nn0nnaddcl 9996 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  1  e.  NN )  ->  ( K  +  1 )  e.  NN )
1613, 14, 15mp2an 653 . . . . . . . . . . . 12  |-  ( K  +  1 )  e.  NN
1716nnnn0i 9973 . . . . . . . . . . 11  |-  ( K  +  1 )  e. 
NN0
18 2nn0 9982 . . . . . . . . . . 11  |-  2  e.  NN0
1917, 18nn0expcli 11129 . . . . . . . . . 10  |-  ( ( K  +  1 ) ^ 2 )  e. 
NN0
20 reexpcl 11120 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( ( K  + 
1 ) ^ 2 )  e.  NN0 )  ->  ( 2 ^ (
( K  +  1 ) ^ 2 ) )  e.  RR )
2112, 19, 20mp2an 653 . . . . . . . . 9  |-  ( 2 ^ ( ( K  +  1 ) ^
2 ) )  e.  RR
2211, 21pm3.2i 441 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 2 ^ (
( K  +  1 ) ^ 2 ) )  e.  RR )
23 faclbnd4lem1.3 . . . . . . . . . . 11  |-  M  e. 
NN0
2423nn0rei 9976 . . . . . . . . . 10  |-  M  e.  RR
2523nn0ge0i 9993 . . . . . . . . . 10  |-  0  <_  M
2624, 25pm3.2i 441 . . . . . . . . 9  |-  ( M  e.  RR  /\  0  <_  M )
27 nn0nnaddcl 9996 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  ( K  +  1
)  e.  NN )  ->  ( M  +  ( K  +  1
) )  e.  NN )
2823, 16, 27mp2an 653 . . . . . . . . . . . 12  |-  ( M  +  ( K  + 
1 ) )  e.  NN
2928nnnn0i 9973 . . . . . . . . . . 11  |-  ( M  +  ( K  + 
1 ) )  e. 
NN0
3023, 29nn0expcli 11129 . . . . . . . . . 10  |-  ( M ^ ( M  +  ( K  +  1
) ) )  e. 
NN0
3130nn0rei 9976 . . . . . . . . 9  |-  ( M ^ ( M  +  ( K  +  1
) ) )  e.  RR
3226, 31pm3.2i 441 . . . . . . . 8  |-  ( ( M  e.  RR  /\  0  <_  M )  /\  ( M ^ ( M  +  ( K  + 
1 ) ) )  e.  RR )
3322, 32pm3.2i 441 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  e.  RR )  /\  ( ( M  e.  RR  /\  0  <_  M )  /\  ( M ^ ( M  +  ( K  +  1
) ) )  e.  RR ) )
34 2cn 9816 . . . . . . . . . 10  |-  2  e.  CC
35 exp0 11108 . . . . . . . . . 10  |-  ( 2  e.  CC  ->  (
2 ^ 0 )  =  1 )
3634, 35ax-mp 8 . . . . . . . . 9  |-  ( 2 ^ 0 )  =  1
37 1lt2 9886 . . . . . . . . . . 11  |-  1  <  2
383, 12, 37ltleii 8941 . . . . . . . . . 10  |-  1  <_  2
39 nn0uz 10262 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
4019, 39eleqtri 2355 . . . . . . . . . 10  |-  ( ( K  +  1 ) ^ 2 )  e.  ( ZZ>= `  0 )
41 leexp2a 11157 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
( K  +  1 ) ^ 2 )  e.  ( ZZ>= `  0
) )  ->  (
2 ^ 0 )  <_  ( 2 ^ ( ( K  + 
1 ) ^ 2 ) ) )
4212, 38, 40, 41mp3an 1277 . . . . . . . . 9  |-  ( 2 ^ 0 )  <_ 
( 2 ^ (
( K  +  1 ) ^ 2 ) )
4336, 42eqbrtrri 4044 . . . . . . . 8  |-  1  <_  ( 2 ^ (
( K  +  1 ) ^ 2 ) )
44 elnn0 9967 . . . . . . . . . 10  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
45 nncn 9754 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  CC )
4645exp1d 11240 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( M ^ 1 )  =  M )
47 nnge1 9772 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  1  <_  M )
48 nnuz 10263 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
4928, 48eleqtri 2355 . . . . . . . . . . . . . 14  |-  ( M  +  ( K  + 
1 ) )  e.  ( ZZ>= `  1 )
50 leexp2a 11157 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  1  <_  M  /\  ( M  +  ( K  +  1 ) )  e.  ( ZZ>= `  1
) )  ->  ( M ^ 1 )  <_ 
( M ^ ( M  +  ( K  +  1 ) ) ) )
5124, 49, 50mp3an13 1268 . . . . . . . . . . . . 13  |-  ( 1  <_  M  ->  ( M ^ 1 )  <_ 
( M ^ ( M  +  ( K  +  1 ) ) ) )
5247, 51syl 15 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( M ^ 1 )  <_ 
( M ^ ( M  +  ( K  +  1 ) ) ) )
5346, 52eqbrtrrd 4045 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  <_  ( M ^ ( M  +  ( K  +  1 ) ) ) )
5430nn0ge0i 9993 . . . . . . . . . . . 12  |-  0  <_  ( M ^ ( M  +  ( K  +  1 ) ) )
55 breq1 4026 . . . . . . . . . . . 12  |-  ( M  =  0  ->  ( M  <_  ( M ^
( M  +  ( K  +  1 ) ) )  <->  0  <_  ( M ^ ( M  +  ( K  + 
1 ) ) ) ) )
5654, 55mpbiri 224 . . . . . . . . . . 11  |-  ( M  =  0  ->  M  <_  ( M ^ ( M  +  ( K  +  1 ) ) ) )
5753, 56jaoi 368 . . . . . . . . . 10  |-  ( ( M  e.  NN  \/  M  =  0 )  ->  M  <_  ( M ^ ( M  +  ( K  +  1
) ) ) )
5844, 57sylbi 187 . . . . . . . . 9  |-  ( M  e.  NN0  ->  M  <_ 
( M ^ ( M  +  ( K  +  1 ) ) ) )
5923, 58ax-mp 8 . . . . . . . 8  |-  M  <_ 
( M ^ ( M  +  ( K  +  1 ) ) )
6043, 59pm3.2i 441 . . . . . . 7  |-  ( 1  <_  ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  /\  M  <_  ( M ^ ( M  +  ( K  +  1 ) ) ) )
61 lemul12a 9614 . . . . . . 7  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  (
2 ^ ( ( K  +  1 ) ^ 2 ) )  e.  RR )  /\  ( ( M  e.  RR  /\  0  <_  M )  /\  ( M ^ ( M  +  ( K  +  1
) ) )  e.  RR ) )  -> 
( ( 1  <_ 
( 2 ^ (
( K  +  1 ) ^ 2 ) )  /\  M  <_ 
( M ^ ( M  +  ( K  +  1 ) ) ) )  ->  (
1  x.  M )  <_  ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( M ^ ( M  +  ( K  +  1 ) ) ) ) ) )
6233, 60, 61mp2 17 . . . . . 6  |-  ( 1  x.  M )  <_ 
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )
63 oveq1 5865 . . . . . . . . 9  |-  ( N  =  1  ->  ( N ^ ( K  + 
1 ) )  =  ( 1 ^ ( K  +  1 ) ) )
6416nnzi 10047 . . . . . . . . . 10  |-  ( K  +  1 )  e.  ZZ
65 1exp 11131 . . . . . . . . . 10  |-  ( ( K  +  1 )  e.  ZZ  ->  (
1 ^ ( K  +  1 ) )  =  1 )
6664, 65ax-mp 8 . . . . . . . . 9  |-  ( 1 ^ ( K  + 
1 ) )  =  1
6763, 66syl6eq 2331 . . . . . . . 8  |-  ( N  =  1  ->  ( N ^ ( K  + 
1 ) )  =  1 )
68 oveq2 5866 . . . . . . . . 9  |-  ( N  =  1  ->  ( M ^ N )  =  ( M ^ 1 ) )
6923nn0cni 9977 . . . . . . . . . 10  |-  M  e.  CC
70 exp1 11109 . . . . . . . . . 10  |-  ( M  e.  CC  ->  ( M ^ 1 )  =  M )
7169, 70ax-mp 8 . . . . . . . . 9  |-  ( M ^ 1 )  =  M
7268, 71syl6eq 2331 . . . . . . . 8  |-  ( N  =  1  ->  ( M ^ N )  =  M )
7367, 72oveq12d 5876 . . . . . . 7  |-  ( N  =  1  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  =  ( 1  x.  M ) )
74 fveq2 5525 . . . . . . . . . 10  |-  ( N  =  1  ->  ( ! `  N )  =  ( ! ` 
1 ) )
75 fac1 11292 . . . . . . . . . 10  |-  ( ! `
 1 )  =  1
7674, 75syl6eq 2331 . . . . . . . . 9  |-  ( N  =  1  ->  ( ! `  N )  =  1 )
7776oveq2d 5874 . . . . . . . 8  |-  ( N  =  1  ->  (
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( M ^ ( M  +  ( K  +  1 ) ) ) )  x.  1 ) )
7821recni 8849 . . . . . . . . . 10  |-  ( 2 ^ ( ( K  +  1 ) ^
2 ) )  e.  CC
7930nn0cni 9977 . . . . . . . . . 10  |-  ( M ^ ( M  +  ( K  +  1
) ) )  e.  CC
8078, 79mulcli 8842 . . . . . . . . 9  |-  ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  e.  CC
8180mulid1i 8839 . . . . . . . 8  |-  ( ( ( 2 ^ (
( K  +  1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  1 )  =  ( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )
8277, 81syl6eq 2331 . . . . . . 7  |-  ( N  =  1  ->  (
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) ) )
8373, 82breq12d 4036 . . . . . 6  |-  ( N  =  1  ->  (
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) )  <->  ( 1  x.  M )  <_ 
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) ) ) )
8462, 83mpbiri 224 . . . . 5  |-  ( N  =  1  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )
859, 84sylbir 204 . . . 4  |-  ( N  <_  1  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )
8685adantr 451 . . 3  |-  ( ( N  <_  1  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )
87 reexpcl 11120 . . . . . . . 8  |-  ( ( N  e.  RR  /\  ( K  +  1
)  e.  NN0 )  ->  ( N ^ ( K  +  1 ) )  e.  RR )
882, 17, 87mp2an 653 . . . . . . 7  |-  ( N ^ ( K  + 
1 ) )  e.  RR
891nnnn0i 9973 . . . . . . . 8  |-  N  e. 
NN0
90 reexpcl 11120 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
9124, 89, 90mp2an 653 . . . . . . 7  |-  ( M ^ N )  e.  RR
9288, 91remulcli 8851 . . . . . 6  |-  ( ( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  e.  RR
9392a1i 10 . . . . 5  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  e.  RR )
9413, 18nn0expcli 11129 . . . . . . . . 9  |-  ( K ^ 2 )  e. 
NN0
95 reexpcl 11120 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( K ^ 2 )  e.  NN0 )  -> 
( 2 ^ ( K ^ 2 ) )  e.  RR )
9612, 94, 95mp2an 653 . . . . . . . 8  |-  ( 2 ^ ( K ^
2 ) )  e.  RR
9718, 13nn0expcli 11129 . . . . . . . . 9  |-  ( 2 ^ K )  e. 
NN0
9897nn0rei 9976 . . . . . . . 8  |-  ( 2 ^ K )  e.  RR
9996, 98remulcli 8851 . . . . . . 7  |-  ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  e.  RR
100 faccl 11298 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
10189, 100ax-mp 8 . . . . . . . . . 10  |-  ( ! `
 N )  e.  NN
102101nnnn0i 9973 . . . . . . . . 9  |-  ( ! `
 N )  e. 
NN0
10330, 102nn0mulcli 10002 . . . . . . . 8  |-  ( ( M ^ ( M  +  ( K  + 
1 ) ) )  x.  ( ! `  N ) )  e. 
NN0
104103nn0rei 9976 . . . . . . 7  |-  ( ( M ^ ( M  +  ( K  + 
1 ) ) )  x.  ( ! `  N ) )  e.  RR
10599, 104remulcli 8851 . . . . . 6  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) )  e.  RR
106105a1i 10 . . . . 5  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) )  x.  (
( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) ) )  e.  RR )
10721, 104remulcli 8851 . . . . . 6  |-  ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( ( M ^ ( M  +  ( K  +  1
) ) )  x.  ( ! `  N
) ) )  e.  RR
108107a1i 10 . . . . 5  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  (
( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) ) )  e.  RR )
1091nncni 9756 . . . . . . . . 9  |-  N  e.  CC
110 expp1 11110 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  K  e.  NN0 )  -> 
( N ^ ( K  +  1 ) )  =  ( ( N ^ K )  x.  N ) )
111109, 13, 110mp2an 653 . . . . . . . 8  |-  ( N ^ ( K  + 
1 ) )  =  ( ( N ^ K )  x.  N
)
112 expm1t 11130 . . . . . . . . 9  |-  ( ( M  e.  CC  /\  N  e.  NN )  ->  ( M ^ N
)  =  ( ( M ^ ( N  -  1 ) )  x.  M ) )
11369, 1, 112mp2an 653 . . . . . . . 8  |-  ( M ^ N )  =  ( ( M ^
( N  -  1 ) )  x.  M
)
114111, 113oveq12i 5870 . . . . . . 7  |-  ( ( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  =  ( ( ( N ^ K )  x.  N )  x.  (
( M ^ ( N  -  1 ) )  x.  M ) )
115 reexpcl 11120 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  K  e.  NN0 )  -> 
( N ^ K
)  e.  RR )
1162, 13, 115mp2an 653 . . . . . . . . 9  |-  ( N ^ K )  e.  RR
117116recni 8849 . . . . . . . 8  |-  ( N ^ K )  e.  CC
118 elnnnn0 10007 . . . . . . . . . . . . 13  |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
NN0 ) )
1191, 118mpbi 199 . . . . . . . . . . . 12  |-  ( N  e.  CC  /\  ( N  -  1 )  e.  NN0 )
120119simpri 448 . . . . . . . . . . 11  |-  ( N  -  1 )  e. 
NN0
12123, 120nn0expcli 11129 . . . . . . . . . 10  |-  ( M ^ ( N  - 
1 ) )  e. 
NN0
122121, 23nn0mulcli 10002 . . . . . . . . 9  |-  ( ( M ^ ( N  -  1 ) )  x.  M )  e. 
NN0
123122nn0cni 9977 . . . . . . . 8  |-  ( ( M ^ ( N  -  1 ) )  x.  M )  e.  CC
124117, 109, 123mulassi 8846 . . . . . . 7  |-  ( ( ( N ^ K
)  x.  N )  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) )  =  ( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )
125114, 124eqtri 2303 . . . . . 6  |-  ( ( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  =  ( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )
12689, 122nn0mulcli 10002 . . . . . . . . . . 11  |-  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) )  e. 
NN0
127126nn0rei 9976 . . . . . . . . . 10  |-  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) )  e.  RR
128116, 127remulcli 8851 . . . . . . . . 9  |-  ( ( N ^ K )  x.  ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) ) )  e.  RR
129128a1i 10 . . . . . . . 8  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  e.  RR )
130120nn0rei 9976 . . . . . . . . . . . 12  |-  ( N  -  1 )  e.  RR
131 reexpcl 11120 . . . . . . . . . . . 12  |-  ( ( ( N  -  1 )  e.  RR  /\  K  e.  NN0 )  -> 
( ( N  - 
1 ) ^ K
)  e.  RR )
132130, 13, 131mp2an 653 . . . . . . . . . . 11  |-  ( ( N  -  1 ) ^ K )  e.  RR
133121nn0rei 9976 . . . . . . . . . . 11  |-  ( M ^ ( N  - 
1 ) )  e.  RR
134132, 133remulcli 8851 . . . . . . . . . 10  |-  ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  e.  RR
13597, 89nn0mulcli 10002 . . . . . . . . . . . 12  |-  ( ( 2 ^ K )  x.  N )  e. 
NN0
136135, 23nn0mulcli 10002 . . . . . . . . . . 11  |-  ( ( ( 2 ^ K
)  x.  N )  x.  M )  e. 
NN0
137136nn0rei 9976 . . . . . . . . . 10  |-  ( ( ( 2 ^ K
)  x.  N )  x.  M )  e.  RR
138134, 137remulcli 8851 . . . . . . . . 9  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M ) )  e.  RR
139138a1i 10 . . . . . . . 8  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) )  e.  RR )
14023, 13nn0addcli 10001 . . . . . . . . . . . . 13  |-  ( M  +  K )  e. 
NN0
141 reexpcl 11120 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  ( M  +  K
)  e.  NN0 )  ->  ( M ^ ( M  +  K )
)  e.  RR )
14224, 140, 141mp2an 653 . . . . . . . . . . . 12  |-  ( M ^ ( M  +  K ) )  e.  RR
14396, 142remulcli 8851 . . . . . . . . . . 11  |-  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  RR
144 faccl 11298 . . . . . . . . . . . . 13  |-  ( ( N  -  1 )  e.  NN0  ->  ( ! `
 ( N  - 
1 ) )  e.  NN )
145120, 144ax-mp 8 . . . . . . . . . . . 12  |-  ( ! `
 ( N  - 
1 ) )  e.  NN
146145nnrei 9755 . . . . . . . . . . 11  |-  ( ! `
 ( N  - 
1 ) )  e.  RR
147143, 146remulcli 8851 . . . . . . . . . 10  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  e.  RR
148147, 137remulcli 8851 . . . . . . . . 9  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) )  e.  RR
149148a1i 10 . . . . . . . 8  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) )  e.  RR )
15098, 132remulcli 8851 . . . . . . . . . . . 12  |-  ( ( 2 ^ K )  x.  ( ( N  -  1 ) ^ K ) )  e.  RR
151126nn0ge0i 9993 . . . . . . . . . . . . 13  |-  0  <_  ( N  x.  (
( M ^ ( N  -  1 ) )  x.  M ) )
152127, 151pm3.2i 441 . . . . . . . . . . . 12  |-  ( ( N  x.  ( ( M ^ ( N  -  1 ) )  x.  M ) )  e.  RR  /\  0  <_  ( N  x.  (
( M ^ ( N  -  1 ) )  x.  M ) ) )
153116, 150, 1523pm3.2i 1130 . . . . . . . . . . 11  |-  ( ( N ^ K )  e.  RR  /\  (
( 2 ^ K
)  x.  ( ( N  -  1 ) ^ K ) )  e.  RR  /\  (
( N  x.  (
( M ^ ( N  -  1 ) )  x.  M ) )  e.  RR  /\  0  <_  ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) ) ) )
154 nnltp1le 10072 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  NN  /\  N  e.  NN )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
15514, 1, 154mp2an 653 . . . . . . . . . . . . 13  |-  ( 1  <  N  <->  ( 1  +  1 )  <_  N )
156 df-2 9804 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
157156breq1i 4030 . . . . . . . . . . . . 13  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
158155, 157bitr4i 243 . . . . . . . . . . . 12  |-  ( 1  <  N  <->  2  <_  N )
159 expubnd 11162 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  K  e.  NN0  /\  2  <_  N )  ->  ( N ^ K )  <_ 
( ( 2 ^ K )  x.  (
( N  -  1 ) ^ K ) ) )
1602, 13, 159mp3an12 1267 . . . . . . . . . . . 12  |-  ( 2  <_  N  ->  ( N ^ K )  <_ 
( ( 2 ^ K )  x.  (
( N  -  1 ) ^ K ) ) )
161158, 160sylbi 187 . . . . . . . . . . 11  |-  ( 1  <  N  ->  ( N ^ K )  <_ 
( ( 2 ^ K )  x.  (
( N  -  1 ) ^ K ) ) )
162 lemul1a 9610 . . . . . . . . . . 11  |-  ( ( ( ( N ^ K )  e.  RR  /\  ( ( 2 ^ K )  x.  (
( N  -  1 ) ^ K ) )  e.  RR  /\  ( ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) )  e.  RR  /\  0  <_  ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) ) ) )  /\  ( N ^ K )  <_  (
( 2 ^ K
)  x.  ( ( N  -  1 ) ^ K ) ) )  ->  ( ( N ^ K )  x.  ( N  x.  (
( M ^ ( N  -  1 ) )  x.  M ) ) )  <_  (
( ( 2 ^ K )  x.  (
( N  -  1 ) ^ K ) )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) ) )
163153, 161, 162sylancr 644 . . . . . . . . . 10  |-  ( 1  <  N  ->  (
( N ^ K
)  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  <_  ( ( ( 2 ^ K )  x.  ( ( N  -  1 ) ^ K ) )  x.  ( N  x.  (
( M ^ ( N  -  1 ) )  x.  M ) ) ) )
16497nn0cni 9977 . . . . . . . . . . . 12  |-  ( 2 ^ K )  e.  CC
165132recni 8849 . . . . . . . . . . . 12  |-  ( ( N  -  1 ) ^ K )  e.  CC
166164, 165, 109, 123mul4i 9009 . . . . . . . . . . 11  |-  ( ( ( 2 ^ K
)  x.  ( ( N  -  1 ) ^ K ) )  x.  ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) ) )  =  ( ( ( 2 ^ K )  x.  N )  x.  (
( ( N  - 
1 ) ^ K
)  x.  ( ( M ^ ( N  -  1 ) )  x.  M ) ) )
167121nn0cni 9977 . . . . . . . . . . . . 13  |-  ( M ^ ( N  - 
1 ) )  e.  CC
168165, 167, 69mulassi 8846 . . . . . . . . . . . 12  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  x.  M )  =  ( ( ( N  -  1 ) ^ K )  x.  (
( M ^ ( N  -  1 ) )  x.  M ) )
169168oveq2i 5869 . . . . . . . . . . 11  |-  ( ( ( 2 ^ K
)  x.  N )  x.  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  x.  M ) )  =  ( ( ( 2 ^ K )  x.  N )  x.  (
( ( N  - 
1 ) ^ K
)  x.  ( ( M ^ ( N  -  1 ) )  x.  M ) ) )
170135nn0cni 9977 . . . . . . . . . . . 12  |-  ( ( 2 ^ K )  x.  N )  e.  CC
171134recni 8849 . . . . . . . . . . . 12  |-  ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  e.  CC
172170, 171, 69mul12i 9007 . . . . . . . . . . 11  |-  ( ( ( 2 ^ K
)  x.  N )  x.  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  x.  M ) )  =  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) )
173166, 169, 1723eqtr2i 2309 . . . . . . . . . 10  |-  ( ( ( 2 ^ K
)  x.  ( ( N  -  1 ) ^ K ) )  x.  ( N  x.  ( ( M ^
( N  -  1 ) )  x.  M
) ) )  =  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) )
174163, 173syl6breq 4062 . . . . . . . . 9  |-  ( 1  <  N  ->  (
( N ^ K
)  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  <_  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) ) )
175174adantr 451 . . . . . . . 8  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  <_  ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) ) )
176136nn0ge0i 9993 . . . . . . . . . . . 12  |-  0  <_  ( ( ( 2 ^ K )  x.  N )  x.  M
)
177137, 176pm3.2i 441 . . . . . . . . . . 11  |-  ( ( ( ( 2 ^ K )  x.  N
)  x.  M )  e.  RR  /\  0  <_  ( ( ( 2 ^ K )  x.  N )  x.  M
) )
178134, 147, 1773pm3.2i 1130 . . . . . . . . . 10  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  e.  RR  /\  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  e.  RR  /\  ( ( ( ( 2 ^ K )  x.  N
)  x.  M )  e.  RR  /\  0  <_  ( ( ( 2 ^ K )  x.  N )  x.  M
) ) )
179 lemul1a 9610 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  e.  RR  /\  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  ( N  -  1 ) ) )  e.  RR  /\  ( ( ( ( 2 ^ K )  x.  N )  x.  M )  e.  RR  /\  0  <_  ( (
( 2 ^ K
)  x.  N )  x.  M ) ) )  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^
( N  -  1 ) ) )  <_ 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  ( N  -  1 ) ) ) )  ->  (
( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M ) )  <_ 
( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) ) )
180178, 179mpan 651 . . . . . . . . 9  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  (
( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M ) )  <_ 
( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) ) )
181180adantl 452 . . . . . . . 8  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) )  <_  ( (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) ) )
182129, 139, 149, 175, 181letrd 8973 . . . . . . 7  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  <_  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  N
)  x.  M ) ) )
183164, 109, 69mul32i 9008 . . . . . . . . 9  |-  ( ( ( 2 ^ K
)  x.  N )  x.  M )  =  ( ( ( 2 ^ K )  x.  M )  x.  N
)
184183oveq2i 5869 . . . . . . . 8  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) )  =  ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  ( ! `  ( N  -  1 ) ) )  x.  ( ( ( 2 ^ K
)  x.  M )  x.  N ) )
185 expp1 11110 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  ( M  +  K
)  e.  NN0 )  ->  ( M ^ (
( M  +  K
)  +  1 ) )  =  ( ( M ^ ( M  +  K ) )  x.  M ) )
18669, 140, 185mp2an 653 . . . . . . . . . . . . 13  |-  ( M ^ ( ( M  +  K )  +  1 ) )  =  ( ( M ^
( M  +  K
) )  x.  M
)
18713nn0cni 9977 . . . . . . . . . . . . . . 15  |-  K  e.  CC
188 ax-1cn 8795 . . . . . . . . . . . . . . 15  |-  1  e.  CC
18969, 187, 188addassi 8845 . . . . . . . . . . . . . 14  |-  ( ( M  +  K )  +  1 )  =  ( M  +  ( K  +  1 ) )
190189oveq2i 5869 . . . . . . . . . . . . 13  |-  ( M ^ ( ( M  +  K )  +  1 ) )  =  ( M ^ ( M  +  ( K  +  1 ) ) )
191186, 190eqtr3i 2305 . . . . . . . . . . . 12  |-  ( ( M ^ ( M  +  K ) )  x.  M )  =  ( M ^ ( M  +  ( K  +  1 ) ) )
192191oveq2i 5869 . . . . . . . . . . 11  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  K
) )  x.  M
) )  =  ( ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )
19396recni 8849 . . . . . . . . . . . 12  |-  ( 2 ^ ( K ^
2 ) )  e.  CC
194142recni 8849 . . . . . . . . . . . 12  |-  ( M ^ ( M  +  K ) )  e.  CC
195193, 164, 194, 69mul4i 9009 . . . . . . . . . . 11  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  K
) )  x.  M
) )  =  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ( 2 ^ K )  x.  M ) )
196192, 195eqtr3i 2305 . . . . . . . . . 10  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( M ^ ( M  +  ( K  +  1 ) ) ) )  =  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ( 2 ^ K )  x.  M ) )
197 facnn2 11297 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `
 ( N  - 
1 ) )  x.  N ) )
1981, 197ax-mp 8 . . . . . . . . . 10  |-  ( ! `
 N )  =  ( ( ! `  ( N  -  1
) )  x.  N
)
199196, 198oveq12i 5870 . . . . . . . . 9  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ( 2 ^ K )  x.  M
) )  x.  (
( ! `  ( N  -  1 ) )  x.  N ) )
200143recni 8849 . . . . . . . . . 10  |-  ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  e.  CC
201145nncni 9756 . . . . . . . . . 10  |-  ( ! `
 ( N  - 
1 ) )  e.  CC
202164, 69mulcli 8842 . . . . . . . . . 10  |-  ( ( 2 ^ K )  x.  M )  e.  CC
203200, 201, 202, 109mul4i 9009 . . . . . . . . 9  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  x.  ( ( ( 2 ^ K )  x.  M )  x.  N
) )  =  ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( M ^ ( M  +  K )
) )  x.  (
( 2 ^ K
)  x.  M ) )  x.  ( ( ! `  ( N  -  1 ) )  x.  N ) )
204199, 203eqtr4i 2306 . . . . . . . 8  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  x.  (
( ( 2 ^ K )  x.  M
)  x.  N ) )
20599recni 8849 . . . . . . . . 9  |-  ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  e.  CC
206101nncni 9756 . . . . . . . . 9  |-  ( ! `
 N )  e.  CC
207205, 79, 206mulassi 8846 . . . . . . . 8  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) )  x.  (
( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) ) )
208184, 204, 2073eqtr2i 2309 . . . . . . 7  |-  ( ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) )  x.  ( ( ( 2 ^ K )  x.  N )  x.  M
) )  =  ( ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )  x.  ( ( M ^ ( M  +  ( K  + 
1 ) ) )  x.  ( ! `  N ) ) )
209182, 208syl6breq 4062 . . . . . 6  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^ K )  x.  ( N  x.  ( ( M ^ ( N  - 
1 ) )  x.  M ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) ) )
210125, 209syl5eqbr 4056 . . . . 5  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) ) )
211103nn0ge0i 9993 . . . . . . . . 9  |-  0  <_  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
)
212104, 211pm3.2i 441 . . . . . . . 8  |-  ( ( ( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) )  e.  RR  /\  0  <_  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) )
21399, 21, 2123pm3.2i 1130 . . . . . . 7  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  e.  RR  /\  ( 2 ^ ( ( K  +  1 ) ^
2 ) )  e.  RR  /\  ( ( ( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) )  e.  RR  /\  0  <_  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) ) )
214 expadd 11144 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( K ^ 2 )  e.  NN0  /\  K  e. 
NN0 )  ->  (
2 ^ ( ( K ^ 2 )  +  K ) )  =  ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) ) )
21534, 94, 13, 214mp3an 1277 . . . . . . . 8  |-  ( 2 ^ ( ( K ^ 2 )  +  K ) )  =  ( ( 2 ^ ( K ^ 2 ) )  x.  (
2 ^ K ) )
21619nn0zi 10048 . . . . . . . . . 10  |-  ( ( K  +  1 ) ^ 2 )  e.  ZZ
21713nn0rei 9976 . . . . . . . . . . . . 13  |-  K  e.  RR
21816nnrei 9755 . . . . . . . . . . . . 13  |-  ( K  +  1 )  e.  RR
21917nn0ge0i 9993 . . . . . . . . . . . . . 14  |-  0  <_  ( K  +  1 )
220218, 219pm3.2i 441 . . . . . . . . . . . . 13  |-  ( ( K  +  1 )  e.  RR  /\  0  <_  ( K  +  1 ) )
221217, 218, 2203pm3.2i 1130 . . . . . . . . . . . 12  |-  ( K  e.  RR  /\  ( K  +  1 )  e.  RR  /\  (
( K  +  1 )  e.  RR  /\  0  <_  ( K  + 
1 ) ) )
222217ltp1i 9660 . . . . . . . . . . . . 13  |-  K  < 
( K  +  1 )
223217, 218, 222ltleii 8941 . . . . . . . . . . . 12  |-  K  <_ 
( K  +  1 )
224 lemul1a 9610 . . . . . . . . . . . 12  |-  ( ( ( K  e.  RR  /\  ( K  +  1 )  e.  RR  /\  ( ( K  + 
1 )  e.  RR  /\  0  <_  ( K  +  1 ) ) )  /\  K  <_ 
( K  +  1 ) )  ->  ( K  x.  ( K  +  1 ) )  <_  ( ( K  +  1 )  x.  ( K  +  1 ) ) )
225221, 223, 224mp2an 653 . . . . . . . . . . 11  |-  ( K  x.  ( K  + 
1 ) )  <_ 
( ( K  + 
1 )  x.  ( K  +  1 ) )
226187sqvali 11183 . . . . . . . . . . . . 13  |-  ( K ^ 2 )  =  ( K  x.  K
)
227187mulid1i 8839 . . . . . . . . . . . . . 14  |-  ( K  x.  1 )  =  K
228227eqcomi 2287 . . . . . . . . . . . . 13  |-  K  =  ( K  x.  1 )
229226, 228oveq12i 5870 . . . . . . . . . . . 12  |-  ( ( K ^ 2 )  +  K )  =  ( ( K  x.  K )  +  ( K  x.  1 ) )
230187, 187, 188adddii 8847 . . . . . . . . . . . 12  |-  ( K  x.  ( K  + 
1 ) )  =  ( ( K  x.  K )  +  ( K  x.  1 ) )
231229, 230eqtr4i 2306 . . . . . . . . . . 11  |-  ( ( K ^ 2 )  +  K )  =  ( K  x.  ( K  +  1 ) )
23216nncni 9756 . . . . . . . . . . . 12  |-  ( K  +  1 )  e.  CC
233232sqvali 11183 . . . . . . . . . . 11  |-  ( ( K  +  1 ) ^ 2 )  =  ( ( K  + 
1 )  x.  ( K  +  1 ) )
234225, 231, 2333brtr4i 4051 . . . . . . . . . 10  |-  ( ( K ^ 2 )  +  K )  <_ 
( ( K  + 
1 ) ^ 2 )
23594, 13nn0addcli 10001 . . . . . . . . . . . 12  |-  ( ( K ^ 2 )  +  K )  e. 
NN0
236235nn0zi 10048 . . . . . . . . . . 11  |-  ( ( K ^ 2 )  +  K )  e.  ZZ
237236eluz1i 10237 . . . . . . . . . 10  |-  ( ( ( K  +  1 ) ^ 2 )  e.  ( ZZ>= `  (
( K ^ 2 )  +  K ) )  <->  ( ( ( K  +  1 ) ^ 2 )  e.  ZZ  /\  ( ( K ^ 2 )  +  K )  <_ 
( ( K  + 
1 ) ^ 2 ) ) )
238216, 234, 237mpbir2an 886 . . . . . . . . 9  |-  ( ( K  +  1 ) ^ 2 )  e.  ( ZZ>= `  ( ( K ^ 2 )  +  K ) )
239 leexp2a 11157 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <_  2  /\  (
( K  +  1 ) ^ 2 )  e.  ( ZZ>= `  (
( K ^ 2 )  +  K ) ) )  ->  (
2 ^ ( ( K ^ 2 )  +  K ) )  <_  ( 2 ^ ( ( K  + 
1 ) ^ 2 ) ) )
24012, 38, 238, 239mp3an 1277 . . . . . . . 8  |-  ( 2 ^ ( ( K ^ 2 )  +  K ) )  <_ 
( 2 ^ (
( K  +  1 ) ^ 2 ) )
241215, 240eqbrtrri 4044 . . . . . . 7  |-  ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  <_ 
( 2 ^ (
( K  +  1 ) ^ 2 ) )
242 lemul1a 9610 . . . . . . 7  |-  ( ( ( ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) )  e.  RR  /\  ( 2 ^ (
( K  +  1 ) ^ 2 ) )  e.  RR  /\  ( ( ( M ^ ( M  +  ( K  +  1
) ) )  x.  ( ! `  N
) )  e.  RR  /\  0  <_  ( ( M ^ ( M  +  ( K  +  1
) ) )  x.  ( ! `  N
) ) ) )  /\  ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) )  <_  (
2 ^ ( ( K  +  1 ) ^ 2 ) ) )  ->  ( (
( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) )  <_  (
( 2 ^ (
( K  +  1 ) ^ 2 ) )  x.  ( ( M ^ ( M  +  ( K  + 
1 ) ) )  x.  ( ! `  N ) ) ) )
243213, 241, 242mp2an 653 . . . . . 6  |-  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( 2 ^ K ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) )  <_  (
( 2 ^ (
( K  +  1 ) ^ 2 ) )  x.  ( ( M ^ ( M  +  ( K  + 
1 ) ) )  x.  ( ! `  N ) ) )
244243a1i 10 . . . . 5  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( ( 2 ^ ( K ^
2 ) )  x.  ( 2 ^ K
) )  x.  (
( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) ) )  <_  ( (
2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( ( M ^ ( M  +  ( K  +  1
) ) )  x.  ( ! `  N
) ) ) )
24593, 106, 108, 210, 244letrd 8973 . . . 4  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( 2 ^ ( ( K  +  1 ) ^
2 ) )  x.  ( ( M ^
( M  +  ( K  +  1 ) ) )  x.  ( ! `  N )
) ) )
24678, 79, 206mulassi 8846 . . . 4  |-  ( ( ( 2 ^ (
( K  +  1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) )  =  ( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  (
( M ^ ( M  +  ( K  +  1 ) ) )  x.  ( ! `
 N ) ) )
247245, 246syl6breqr 4063 . . 3  |-  ( ( 1  <  N  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) ) )  -> 
( ( N ^
( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )
24886, 247jaoian 759 . 2  |-  ( ( ( N  <_  1  \/  1  <  N )  /\  ( ( ( N  -  1 ) ^ K )  x.  ( M ^ ( N  -  1 ) ) )  <_  (
( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^ ( M  +  K ) ) )  x.  ( ! `  ( N  -  1
) ) ) )  ->  ( ( N ^ ( K  + 
1 ) )  x.  ( M ^ N
) )  <_  (
( ( 2 ^ ( ( K  + 
1 ) ^ 2 ) )  x.  ( M ^ ( M  +  ( K  +  1
) ) ) )  x.  ( ! `  N ) ) )
2495, 248mpan 651 1  |-  ( ( ( ( N  - 
1 ) ^ K
)  x.  ( M ^ ( N  - 
1 ) ) )  <_  ( ( ( 2 ^ ( K ^ 2 ) )  x.  ( M ^
( M  +  K
) ) )  x.  ( ! `  ( N  -  1 ) ) )  ->  (
( N ^ ( K  +  1 ) )  x.  ( M ^ N ) )  <_  ( ( ( 2 ^ ( ( K  +  1 ) ^ 2 ) )  x.  ( M ^
( M  +  ( K  +  1 ) ) ) )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ^cexp 11104   !cfa 11288
This theorem is referenced by:  faclbnd4lem2  11307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-fac 11289
  Copyright terms: Public domain W3C validator