MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd6 Unicode version

Theorem faclbnd6 11312
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )

Proof of Theorem faclbnd6
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
0 ) )
21oveq2d 5874 . . . . 5  |-  ( m  =  0  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ 0 ) ) )
3 oveq2 5866 . . . . . 6  |-  ( m  =  0  ->  ( N  +  m )  =  ( N  + 
0 ) )
43fveq2d 5529 . . . . 5  |-  ( m  =  0  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  0 ) ) )
52, 4breq12d 4036 . . . 4  |-  ( m  =  0  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) )
65imbi2d 307 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) ) )
7 oveq2 5866 . . . . . 6  |-  ( m  =  k  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
k ) )
87oveq2d 5874 . . . . 5  |-  ( m  =  k  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) ) )
9 oveq2 5866 . . . . . 6  |-  ( m  =  k  ->  ( N  +  m )  =  ( N  +  k ) )
109fveq2d 5529 . . . . 5  |-  ( m  =  k  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  k )
) )
118, 10breq12d 4036 . . . 4  |-  ( m  =  k  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) )
1211imbi2d 307 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) ) )
13 oveq2 5866 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
( k  +  1 ) ) )
1413oveq2d 5874 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) ) )
15 oveq2 5866 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( N  +  m )  =  ( N  +  ( k  +  1 ) ) )
1615fveq2d 5529 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  ( k  +  1 ) ) ) )
1714, 16breq12d 4036 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
1817imbi2d 307 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
19 oveq2 5866 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^ M ) )
2019oveq2d 5874 . . . . 5  |-  ( m  =  M  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ M
) ) )
21 oveq2 5866 . . . . . 6  |-  ( m  =  M  ->  ( N  +  m )  =  ( N  +  M ) )
2221fveq2d 5529 . . . . 5  |-  ( m  =  M  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  M )
) )
2320, 22breq12d 4036 . . . 4  |-  ( m  =  M  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) )
2423imbi2d 307 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) ) )
25 faccl 11298 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2625nnred 9761 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
2726leidd 9339 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  <_ 
( ! `  N
) )
28 nn0cn 9975 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
29 peano2cn 8984 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
3028, 29syl 15 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
3130exp0d 11239 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 ) ^ 0 )  =  1 )
3231oveq2d 5874 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ( ! `  N )  x.  1 ) )
3325nncnd 9762 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
3433mulid1d 8852 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  1 )  =  ( ! `  N
) )
3532, 34eqtrd 2315 . . . 4  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ! `  N
) )
3628addid1d 9012 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  0 )  =  N )
3736fveq2d 5529 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
0 ) )  =  ( ! `  N
) )
3827, 35, 373brtr4d 4053 . . 3  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  <_ 
( ! `  ( N  +  0 ) ) )
3926adantr 451 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
40 peano2nn0 10004 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
4140nn0red 10019 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
42 reexpcl 11120 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  RR  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4341, 42sylan 457 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4439, 43remulcld 8863 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  e.  RR )
45 nnnn0 9972 . . . . . . . . . . . . . . 15  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  NN0 )
4645nn0ge0d 10021 . . . . . . . . . . . . . 14  |-  ( ( ! `  N )  e.  NN  ->  0  <_  ( ! `  N
) )
4725, 46syl 15 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
4847adantr 451 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ! `  N ) )
4941adantr 451 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  RR )
50 simpr 447 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
5140nn0ge0d 10021 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  0  <_ 
( N  +  1 ) )
5251adantr 451 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( N  +  1 ) )
5349, 50, 52expge0d 11263 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( N  +  1 ) ^ k ) )
5439, 43, 48, 53mulge0d 9349 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) )
5544, 54jca 518 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) ) )
56 nn0addcl 9999 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  NN0 )
57 faccl 11298 . . . . . . . . . . . 12  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( N  +  k ) )  e.  NN )
5856, 57syl 15 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  NN )
5958nnred 9761 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  RR )
60 nn0re 9974 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
61 peano2nn0 10004 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
6261nn0red 10019 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
63 readdcl 8820 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( N  +  ( k  +  1 ) )  e.  RR )
6460, 62, 63syl2an 463 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  e.  RR )
6549, 52, 64jca31 520 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )
6655, 59, 65jca31 520 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
6766adantr 451 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
68 simpr 447 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )
6936adantr 451 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  =  N )
70 nn0ge0 9991 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  0  <_ 
k )
7170adantl 452 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  k )
72 nn0re 9974 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  RR )
7372adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  RR )
7460adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  RR )
75 0re 8838 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
76 leadd2 9243 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
0  <_  k  <->  ( N  +  0 )  <_ 
( N  +  k ) ) )
7775, 76mp3an1 1264 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7873, 74, 77syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7971, 78mpbid 201 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  <_  ( N  +  k ) )
8069, 79eqbrtrrd 4045 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  <_  ( N  +  k ) )
8156nn0red 10019 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  RR )
82 1re 8837 . . . . . . . . . . . . . 14  |-  1  e.  RR
83 leadd1 9242 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR  /\  1  e.  RR )  ->  ( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8482, 83mp3an3 1266 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR )  ->  ( N  <_ 
( N  +  k )  <->  ( N  + 
1 )  <_  (
( N  +  k )  +  1 ) ) )
8574, 81, 84syl2anc 642 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8680, 85mpbid 201 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( ( N  +  k )  +  1 ) )
87 nn0cn 9975 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
88 ax-1cn 8795 . . . . . . . . . . . . 13  |-  1  e.  CC
89 addass 8824 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9088, 89mp3an3 1266 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9128, 87, 90syl2an 463 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9286, 91breqtrd 4047 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9392adantr 451 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9468, 93jca 518 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  /\  ( N  + 
1 )  <_  ( N  +  ( k  +  1 ) ) ) )
95 lemul12a 9614 . . . . . . . 8  |-  ( ( ( ( ( ( ! `  N )  x.  ( ( N  +  1 ) ^
k ) )  e.  RR  /\  0  <_ 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )  ->  ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  /\  ( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) ) )
9667, 94, 95sylc 56 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
97 expp1 11110 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9830, 97sylan 457 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9998oveq2d 5874 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10033adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  CC )
101 expcl 11121 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10230, 101sylan 457 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10330adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
104100, 102, 103mulassd 8858 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10599, 104eqtr4d 2318 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
106105adantr 451 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
107 facp1 11293 . . . . . . . . . 10  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( ( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) ) )
10856, 107syl 15 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( ( N  +  k )  +  1 ) ) )
10991fveq2d 5529 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ! `
 ( N  +  ( k  +  1 ) ) ) )
11091oveq2d 5874 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
111108, 109, 1103eqtr3d 2323 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
112111adantr 451 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
11396, 106, 1123brtr4d 4053 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) )
114113ex 423 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  ->  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
115114expcom 424 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  (
k  +  1 ) ) ) ) ) )
116115a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) ) )  -> 
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
1176, 12, 18, 24, 38, 116nn0ind 10108 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^ M ) )  <_ 
( ! `  ( N  +  M )
) ) )
118117impcom 419 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868   NNcn 9746   NN0cn0 9965   ^cexp 11104   !cfa 11288
This theorem is referenced by:  eftlub  12389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105  df-fac 11289
  Copyright terms: Public domain W3C validator