MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd6 Structured version   Unicode version

Theorem faclbnd6 11590
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )

Proof of Theorem faclbnd6
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
0 ) )
21oveq2d 6097 . . . . 5  |-  ( m  =  0  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ 0 ) ) )
3 oveq2 6089 . . . . . 6  |-  ( m  =  0  ->  ( N  +  m )  =  ( N  + 
0 ) )
43fveq2d 5732 . . . . 5  |-  ( m  =  0  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  0 ) ) )
52, 4breq12d 4225 . . . 4  |-  ( m  =  0  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) )
65imbi2d 308 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ 0 ) )  <_  ( ! `  ( N  +  0 ) ) ) ) )
7 oveq2 6089 . . . . . 6  |-  ( m  =  k  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
k ) )
87oveq2d 6097 . . . . 5  |-  ( m  =  k  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) ) )
9 oveq2 6089 . . . . . 6  |-  ( m  =  k  ->  ( N  +  m )  =  ( N  +  k ) )
109fveq2d 5732 . . . . 5  |-  ( m  =  k  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  k )
) )
118, 10breq12d 4225 . . . 4  |-  ( m  =  k  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) )
1211imbi2d 308 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) ) ) ) )
13 oveq2 6089 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^
( k  +  1 ) ) )
1413oveq2d 6097 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) ) )
15 oveq2 6089 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( N  +  m )  =  ( N  +  ( k  +  1 ) ) )
1615fveq2d 5732 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  ( k  +  1 ) ) ) )
1714, 16breq12d 4225 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
1817imbi2d 308 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
19 oveq2 6089 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  1 ) ^ m )  =  ( ( N  +  1 ) ^ M ) )
2019oveq2d 6097 . . . . 5  |-  ( m  =  M  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ m ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ M
) ) )
21 oveq2 6089 . . . . . 6  |-  ( m  =  M  ->  ( N  +  m )  =  ( N  +  M ) )
2221fveq2d 5732 . . . . 5  |-  ( m  =  M  ->  ( ! `  ( N  +  m ) )  =  ( ! `  ( N  +  M )
) )
2320, 22breq12d 4225 . . . 4  |-  ( m  =  M  ->  (
( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) )  <->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) )
2423imbi2d 308 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ m ) )  <_  ( ! `  ( N  +  m
) ) )  <->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ M
) )  <_  ( ! `  ( N  +  M ) ) ) ) )
25 faccl 11576 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2625nnred 10015 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
2726leidd 9593 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  <_ 
( ! `  N
) )
28 nn0cn 10231 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
29 peano2cn 9238 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
3028, 29syl 16 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
3130exp0d 11517 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 ) ^ 0 )  =  1 )
3231oveq2d 6097 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ( ! `  N )  x.  1 ) )
3325nncnd 10016 . . . . . 6  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
3433mulid1d 9105 . . . . 5  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  1 )  =  ( ! `  N
) )
3532, 34eqtrd 2468 . . . 4  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  =  ( ! `  N
) )
3628addid1d 9266 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  0 )  =  N )
3736fveq2d 5732 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
0 ) )  =  ( ! `  N
) )
3827, 35, 373brtr4d 4242 . . 3  |-  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^
0 ) )  <_ 
( ! `  ( N  +  0 ) ) )
3926adantr 452 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  RR )
40 peano2nn0 10260 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
4140nn0red 10275 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
42 reexpcl 11398 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  RR  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4341, 42sylan 458 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  RR )
4439, 43remulcld 9116 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  e.  RR )
45 nnnn0 10228 . . . . . . . . . . . . . . 15  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  NN0 )
4645nn0ge0d 10277 . . . . . . . . . . . . . 14  |-  ( ( ! `  N )  e.  NN  ->  0  <_  ( ! `  N
) )
4725, 46syl 16 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
4847adantr 452 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ! `  N ) )
4941adantr 452 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  RR )
50 simpr 448 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
5140nn0ge0d 10277 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  0  <_ 
( N  +  1 ) )
5251adantr 452 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( N  +  1 ) )
5349, 50, 52expge0d 11541 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( N  +  1 ) ^ k ) )
5439, 43, 48, 53mulge0d 9603 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) )
5544, 54jca 519 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  ( ( N  + 
1 ) ^ k
) ) ) )
56 nn0addcl 10255 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  NN0 )
57 faccl 11576 . . . . . . . . . . . 12  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( N  +  k ) )  e.  NN )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  NN )
5958nnred 10015 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  k )
)  e.  RR )
60 nn0re 10230 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
61 peano2nn0 10260 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
6261nn0red 10275 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
63 readdcl 9073 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( N  +  ( k  +  1 ) )  e.  RR )
6460, 62, 63syl2an 464 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  e.  RR )
6549, 52, 64jca31 521 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )
6655, 59, 65jca31 521 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
6766adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  e.  RR  /\  0  <_  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) ) )
68 simpr 448 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )
6936adantr 452 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  =  N )
70 nn0ge0 10247 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  0  <_ 
k )
7170adantl 453 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
0  <_  k )
72 nn0re 10230 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  RR )
7372adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  RR )
7460adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  RR )
75 0re 9091 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
76 leadd2 9497 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  k  e.  RR  /\  N  e.  RR )  ->  (
0  <_  k  <->  ( N  +  0 )  <_ 
( N  +  k ) ) )
7775, 76mp3an1 1266 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7873, 74, 77syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( 0  <_  k  <->  ( N  +  0 )  <_  ( N  +  k ) ) )
7971, 78mpbid 202 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  0 )  <_  ( N  +  k ) )
8069, 79eqbrtrrd 4234 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  <_  ( N  +  k ) )
8156nn0red 10275 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  k )  e.  RR )
82 1re 9090 . . . . . . . . . . . . . 14  |-  1  e.  RR
83 leadd1 9496 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR  /\  1  e.  RR )  ->  ( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8482, 83mp3an3 1268 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( N  +  k
)  e.  RR )  ->  ( N  <_ 
( N  +  k )  <->  ( N  + 
1 )  <_  (
( N  +  k )  +  1 ) ) )
8574, 81, 84syl2anc 643 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  ( N  +  k )  <->  ( N  +  1 )  <_  ( ( N  +  k )  +  1 ) ) )
8680, 85mpbid 202 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( ( N  +  k )  +  1 ) )
87 nn0cn 10231 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  k  e.  CC )
88 ax-1cn 9048 . . . . . . . . . . . . 13  |-  1  e.  CC
89 addass 9077 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9088, 89mp3an3 1268 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9128, 87, 90syl2an 464 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
9286, 91breqtrd 4236 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9392adantr 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )
9468, 93jca 519 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  /\  ( N  + 
1 )  <_  ( N  +  ( k  +  1 ) ) ) )
95 lemul12a 9868 . . . . . . . 8  |-  ( ( ( ( ( ( ! `  N )  x.  ( ( N  +  1 ) ^
k ) )  e.  RR  /\  0  <_ 
( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) ) )  /\  ( ! `  ( N  +  k ) )  e.  RR )  /\  ( ( ( N  +  1 )  e.  RR  /\  0  <_ 
( N  +  1 ) )  /\  ( N  +  ( k  +  1 ) )  e.  RR ) )  ->  ( ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  /\  ( N  +  1 )  <_  ( N  +  ( k  +  1 ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) ) )
9667, 94, 95sylc 58 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  <_  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
97 expp1 11388 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9830, 97sylan 458 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ (
k  +  1 ) )  =  ( ( ( N  +  1 ) ^ k )  x.  ( N  + 
1 ) ) )
9998oveq2d 6097 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10033adantr 452 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  N
)  e.  CC )
101 expcl 11399 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  CC  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10230, 101sylan 458 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 ) ^ k
)  e.  CC )
10330adantr 452 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
104100, 102, 103mulassd 9111 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  x.  ( N  +  1 ) )  =  ( ( ! `  N )  x.  ( ( ( N  +  1 ) ^ k )  x.  ( N  +  1 ) ) ) )
10599, 104eqtr4d 2471 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
106105adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  =  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  x.  ( N  + 
1 ) ) )
107 facp1 11571 . . . . . . . . . 10  |-  ( ( N  +  k )  e.  NN0  ->  ( ! `
 ( ( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) ) )
10856, 107syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( ( N  +  k )  +  1 ) ) )
10991fveq2d 5732 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
( N  +  k )  +  1 ) )  =  ( ! `
 ( N  +  ( k  +  1 ) ) ) )
11091oveq2d 6097 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  ( N  +  k
) )  x.  (
( N  +  k )  +  1 ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
111108, 109, 1103eqtr3d 2476 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
112111adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ! `  ( N  +  ( k  +  1 ) ) )  =  ( ( ! `  ( N  +  k ) )  x.  ( N  +  ( k  +  1 ) ) ) )
11396, 106, 1123brtr4d 4242 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ! `  N )  x.  (
( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k ) ) )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) )
114113ex 424 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ k
) )  <_  ( ! `  ( N  +  k ) )  ->  ( ( ! `
 N )  x.  ( ( N  + 
1 ) ^ (
k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) )
115114expcom 425 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) )  ->  (
( ! `  N
)  x.  ( ( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  (
k  +  1 ) ) ) ) ) )
116115a2d 24 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ! `  N
)  x.  ( ( N  +  1 ) ^ k ) )  <_  ( ! `  ( N  +  k
) ) )  -> 
( N  e.  NN0  ->  ( ( ! `  N )  x.  (
( N  +  1 ) ^ ( k  +  1 ) ) )  <_  ( ! `  ( N  +  ( k  +  1 ) ) ) ) ) )
1176, 12, 18, 24, 38, 116nn0ind 10366 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ! `  N )  x.  ( ( N  +  1 ) ^ M ) )  <_ 
( ! `  ( N  +  M )
) ) )
118117impcom 420 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ! `  N )  x.  (
( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    <_ cle 9121   NNcn 10000   NN0cn0 10221   ^cexp 11382   !cfa 11566
This theorem is referenced by:  eftlub  12710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-seq 11324  df-exp 11383  df-fac 11567
  Copyright terms: Public domain W3C validator