Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  facrm Unicode version

Theorem facrm 24953
Description: False can be removed from a disjunction. (Contributed by FL, 20-Mar-2011.)
Assertion
Ref Expression
facrm  |-  ( (  F.  \/  ph )  <->  ph )

Proof of Theorem facrm
StepHypRef Expression
1 falim 1319 . . 3  |-  (  F. 
->  ph )
2 id 19 . . 3  |-  ( ph  ->  ph )
31, 2jaoi 368 . 2  |-  ( (  F.  \/  ph )  ->  ph )
4 olc 373 . 2  |-  ( ph  ->  (  F.  \/  ph ) )
53, 4impbii 180 1  |-  ( (  F.  \/  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    F. wfal 1308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator