MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Unicode version

Theorem facth 20083
Description: The factor theorem. If a polynomial  F has a root at  A, then  G  =  x  -  A is a factor of  F (and the other factor is  F quot  G). (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
Assertion
Ref Expression
facth  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  o F  x.  ( F quot  G ) ) )

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
2 eqid 2380 . . . . 5  |-  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
31, 2plyrem 20082 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
433adant3 977 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { ( F `  A ) } ) )
5 simp3 959 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F `  A )  =  0 )
65sneqd 3763 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  { ( F `  A ) }  =  { 0 } )
76xpeq2d 4835 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { 0 } ) )
84, 7eqtrd 2412 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } ) )
9 cnex 8997 . . . 4  |-  CC  e.  _V
109a1i 11 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  CC  e.  _V )
11 simp1 957 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  S )
)
12 plyf 19977 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
1311, 12syl 16 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F : CC --> CC )
141plyremlem 20081 . . . . . . 7  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
15143ad2ant2 979 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
1615simp1d 969 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  e.  (Poly `  CC )
)
17 plyssc 19979 . . . . . . 7  |-  (Poly `  S )  C_  (Poly `  CC )
1817, 11sseldi 3282 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  e.  (Poly `  CC )
)
1915simp2d 970 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =  1 )
20 ax-1ne0 8985 . . . . . . . . 9  |-  1  =/=  0
2120a1i 11 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  1  =/=  0 )
2219, 21eqnetrd 2561 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (deg `  G )  =/=  0
)
23 fveq2 5661 . . . . . . . . 9  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
24 dgr0 20040 . . . . . . . . 9  |-  (deg ` 
0 p )  =  0
2523, 24syl6eq 2428 . . . . . . . 8  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
2625necon3i 2582 . . . . . . 7  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0 p )
2722, 26syl 16 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  G  =/=  0 p )
28 quotcl2 20079 . . . . . 6  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
2918, 16, 27, 28syl3anc 1184 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( F quot  G )  e.  (Poly `  CC ) )
30 plymulcl 20000 . . . . 5  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  o F  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
3116, 29, 30syl2anc 643 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
32 plyf 19977 . . . 4  |-  ( ( G  o F  x.  ( F quot  G )
)  e.  (Poly `  CC )  ->  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )
3331, 32syl 16 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )
34 ofsubeq0 9922 . . 3  |-  ( ( CC  e.  _V  /\  F : CC --> CC  /\  ( G  o F  x.  ( F quot  G ) ) : CC --> CC )  ->  ( ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  { 0 } )  <-> 
F  =  ( G  o F  x.  ( F quot  G ) ) ) )
3510, 13, 33, 34syl3anc 1184 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  =  ( CC  X.  {
0 } )  <->  F  =  ( G  o F  x.  ( F quot  G ) ) ) )
368, 35mpbid 202 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC  /\  ( F `
 A )  =  0 )  ->  F  =  ( G  o F  x.  ( F quot  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   _Vcvv 2892   {csn 3750    X. cxp 4809   `'ccnv 4810   "cima 4814   -->wf 5383   ` cfv 5387  (class class class)co 6013    o Fcof 6235   CCcc 8914   0cc0 8916   1c1 8917    x. cmul 8921    - cmin 9216   0 pc0p 19421  Polycply 19963   X pcidp 19964  degcdgr 19966   quot cquot 20067
This theorem is referenced by:  fta1lem  20084  vieta1lem1  20087  vieta1lem2  20088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-0p 19422  df-ply 19967  df-idp 19968  df-coe 19969  df-dgr 19970  df-quot 20068
  Copyright terms: Public domain W3C validator