MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth1 Unicode version

Theorem facth1 19550
Description: The factor theorem and its converse. A polynomial  F has a root at  A iff  G  =  x  -  A is a factor of  F. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p  |-  P  =  (Poly1 `  R )
ply1rem.b  |-  B  =  ( Base `  P
)
ply1rem.k  |-  K  =  ( Base `  R
)
ply1rem.x  |-  X  =  (var1 `  R )
ply1rem.m  |-  .-  =  ( -g `  P )
ply1rem.a  |-  A  =  (algSc `  P )
ply1rem.g  |-  G  =  ( X  .-  ( A `  N )
)
ply1rem.o  |-  O  =  (eval1 `  R )
ply1rem.1  |-  ( ph  ->  R  e. NzRing )
ply1rem.2  |-  ( ph  ->  R  e.  CRing )
ply1rem.3  |-  ( ph  ->  N  e.  K )
ply1rem.4  |-  ( ph  ->  F  e.  B )
facth1.z  |-  .0.  =  ( 0g `  R )
facth1.d  |-  .||  =  (
||r `  P )
Assertion
Ref Expression
facth1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )

Proof of Theorem facth1
StepHypRef Expression
1 ply1rem.1 . . . 4  |-  ( ph  ->  R  e. NzRing )
2 nzrrng 16013 . . . 4  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 15 . . 3  |-  ( ph  ->  R  e.  Ring )
4 ply1rem.4 . . 3  |-  ( ph  ->  F  e.  B )
5 ply1rem.p . . . . . 6  |-  P  =  (Poly1 `  R )
6 ply1rem.b . . . . . 6  |-  B  =  ( Base `  P
)
7 ply1rem.k . . . . . 6  |-  K  =  ( Base `  R
)
8 ply1rem.x . . . . . 6  |-  X  =  (var1 `  R )
9 ply1rem.m . . . . . 6  |-  .-  =  ( -g `  P )
10 ply1rem.a . . . . . 6  |-  A  =  (algSc `  P )
11 ply1rem.g . . . . . 6  |-  G  =  ( X  .-  ( A `  N )
)
12 ply1rem.o . . . . . 6  |-  O  =  (eval1 `  R )
13 ply1rem.2 . . . . . 6  |-  ( ph  ->  R  e.  CRing )
14 ply1rem.3 . . . . . 6  |-  ( ph  ->  N  e.  K )
15 eqid 2283 . . . . . 6  |-  (Monic1p `  R
)  =  (Monic1p `  R
)
16 eqid 2283 . . . . . 6  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
17 facth1.z . . . . . 6  |-  .0.  =  ( 0g `  R )
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 19548 . . . . 5  |-  ( ph  ->  ( G  e.  (Monic1p `  R )  /\  (
( deg1  `
 R ) `  G )  =  1  /\  ( `' ( O `  G )
" {  .0.  }
)  =  { N } ) )
1918simp1d 967 . . . 4  |-  ( ph  ->  G  e.  (Monic1p `  R
) )
20 eqid 2283 . . . . 5  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
2120, 15mon1puc1p 19536 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  (Monic1p `  R ) )  ->  G  e.  (Unic1p `  R ) )
223, 19, 21syl2anc 642 . . 3  |-  ( ph  ->  G  e.  (Unic1p `  R
) )
23 facth1.d . . . 4  |-  .||  =  (
||r `  P )
24 eqid 2283 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  P
)
25 eqid 2283 . . . 4  |-  (rem1p `  R
)  =  (rem1p `  R
)
265, 23, 6, 20, 24, 25dvdsr1p 19547 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  (Unic1p `  R ) )  ->  ( G  .||  F 
<->  ( F (rem1p `  R
) G )  =  ( 0g `  P
) ) )
273, 4, 22, 26syl3anc 1182 . 2  |-  ( ph  ->  ( G  .||  F  <->  ( F
(rem1p `
 R ) G )  =  ( 0g
`  P ) ) )
285, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25ply1rem 19549 . . 3  |-  ( ph  ->  ( F (rem1p `  R
) G )  =  ( A `  (
( O `  F
) `  N )
) )
295, 10, 17, 24ply1scl0 16365 . . . . 5  |-  ( R  e.  Ring  ->  ( A `
 .0.  )  =  ( 0g `  P
) )
303, 29syl 15 . . . 4  |-  ( ph  ->  ( A `  .0.  )  =  ( 0g `  P ) )
3130eqcomd 2288 . . 3  |-  ( ph  ->  ( 0g `  P
)  =  ( A `
 .0.  ) )
3228, 31eqeq12d 2297 . 2  |-  ( ph  ->  ( ( F (rem1p `  R ) G )  =  ( 0g `  P )  <->  ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )
) )
335, 10, 7, 6ply1sclf1 16364 . . . 4  |-  ( R  e.  Ring  ->  A : K -1-1-> B )
343, 33syl 15 . . 3  |-  ( ph  ->  A : K -1-1-> B
)
35 eqid 2283 . . . . 5  |-  ( R  ^s  K )  =  ( R  ^s  K )
36 eqid 2283 . . . . 5  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
37 fvex 5539 . . . . . . 7  |-  ( Base `  R )  e.  _V
387, 37eqeltri 2353 . . . . . 6  |-  K  e. 
_V
3938a1i 10 . . . . 5  |-  ( ph  ->  K  e.  _V )
4012, 5, 35, 7evl1rhm 19412 . . . . . . . 8  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
4113, 40syl 15 . . . . . . 7  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
426, 36rhmf 15504 . . . . . . 7  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
4341, 42syl 15 . . . . . 6  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
44 ffvelrn 5663 . . . . . 6  |-  ( ( O : B --> ( Base `  ( R  ^s  K ) )  /\  F  e.  B )  ->  ( O `  F )  e.  ( Base `  ( R  ^s  K ) ) )
4543, 4, 44syl2anc 642 . . . . 5  |-  ( ph  ->  ( O `  F
)  e.  ( Base `  ( R  ^s  K ) ) )
4635, 7, 36, 1, 39, 45pwselbas 13388 . . . 4  |-  ( ph  ->  ( O `  F
) : K --> K )
47 ffvelrn 5663 . . . 4  |-  ( ( ( O `  F
) : K --> K  /\  N  e.  K )  ->  ( ( O `  F ) `  N
)  e.  K )
4846, 14, 47syl2anc 642 . . 3  |-  ( ph  ->  ( ( O `  F ) `  N
)  e.  K )
497, 17rng0cl 15362 . . . 4  |-  ( R  e.  Ring  ->  .0.  e.  K )
503, 49syl 15 . . 3  |-  ( ph  ->  .0.  e.  K )
51 f1fveq 5786 . . 3  |-  ( ( A : K -1-1-> B  /\  ( ( ( O `
 F ) `  N )  e.  K  /\  .0.  e.  K ) )  ->  ( ( A `  ( ( O `  F ) `  N ) )  =  ( A `  .0.  ) 
<->  ( ( O `  F ) `  N
)  =  .0.  )
)
5234, 48, 50, 51syl12anc 1180 . 2  |-  ( ph  ->  ( ( A `  ( ( O `  F ) `  N
) )  =  ( A `  .0.  )  <->  ( ( O `  F
) `  N )  =  .0.  ) )
5327, 32, 523bitrd 270 1  |-  ( ph  ->  ( G  .||  F  <->  ( ( O `  F ) `  N )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   class class class wbr 4023   `'ccnv 4688   "cima 4692   -->wf 5251   -1-1->wf1 5252   ` cfv 5255  (class class class)co 5858   1c1 8738   Basecbs 13148    ^s cpws 13347   0gc0g 13400   -gcsg 14365   Ringcrg 15337   CRingccrg 15338   ||rcdsr 15420   RingHom crh 15494  NzRingcnzr 16009  algSccascl 16052  var1cv1 16251  Poly1cpl1 16252  eval1ce1 16254   deg1 cdg1 19440  Monic1pcmn1 19511  Unic1pcuc1p 19512  rem1pcr1p 19514
This theorem is referenced by:  fta1glem1  19551  fta1glem2  19552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-nzr 16010  df-rlreg 16024  df-assa 16053  df-asp 16054  df-ascl 16055  df-psr 16098  df-mvr 16099  df-mpl 16100  df-evls 16101  df-evl 16102  df-opsr 16106  df-psr1 16257  df-vr1 16258  df-ply1 16259  df-evl1 16261  df-coe1 16262  df-cnfld 16378  df-mdeg 19441  df-deg1 19442  df-mon1 19516  df-uc1p 19517  df-q1p 19518  df-r1p 19519
  Copyright terms: Public domain W3C validator