MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facwordi Unicode version

Theorem facwordi 11302
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )

Proof of Theorem facwordi
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4027 . . . . . 6  |-  ( j  =  0  ->  ( M  <_  j  <->  M  <_  0 ) )
21anbi2d 684 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  0 ) ) )
3 fveq2 5525 . . . . . 6  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
43breq2d 4035 . . . . 5  |-  ( j  =  0  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  0 )
) )
52, 4imbi12d 311 . . . 4  |-  ( j  =  0  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
0 )  ->  ( ! `  M )  <_  ( ! `  0
) ) ) )
6 breq2 4027 . . . . . 6  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
76anbi2d 684 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  k ) ) )
8 fveq2 5525 . . . . . 6  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98breq2d 4035 . . . . 5  |-  ( j  =  k  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  k )
) )
107, 9imbi12d 311 . . . 4  |-  ( j  =  k  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
k )  ->  ( ! `  M )  <_  ( ! `  k
) ) ) )
11 breq2 4027 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
1211anbi2d 684 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  ( k  +  1 ) ) ) )
13 fveq2 5525 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1413breq2d 4035 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
1512, 14imbi12d 311 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
16 breq2 4027 . . . . . 6  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
1716anbi2d 684 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  N ) ) )
18 fveq2 5525 . . . . . 6  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
1918breq2d 4035 . . . . 5  |-  ( j  =  N  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  N )
) )
2017, 19imbi12d 311 . . . 4  |-  ( j  =  N  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) ) ) )
21 nn0le0eq0 9994 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
2221biimpa 470 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  0 )  ->  M  =  0 )
2322fveq2d 5529 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  =  ( ! `
 0 ) )
24 fac0 11291 . . . . . . 7  |-  ( ! `
 0 )  =  1
25 1re 8837 . . . . . . 7  |-  1  e.  RR
2624, 25eqeltri 2353 . . . . . 6  |-  ( ! `
 0 )  e.  RR
2726leidi 9307 . . . . 5  |-  ( ! `
 0 )  <_ 
( ! `  0
)
2823, 27syl6eqbr 4060 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  <_  ( ! `  0 ) )
29 impexp 433 . . . . 5  |-  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  <->  ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k )
) ) )
30 nn0re 9974 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
31 nn0re 9974 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
32 peano2re 8985 . . . . . . . . . . . . 13  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
3331, 32syl 15 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
34 leloe 8908 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  <_ 
( k  +  1 )  <->  ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
3530, 33, 34syl2an 463 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  <-> 
( M  <  (
k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
36 nn0leltp1 10075 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  <->  M  <  ( k  +  1 ) ) )
37 faccl 11298 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3837nnred 9761 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  RR )
3937nnnn0d 10018 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e. 
NN0 )
4039nn0ge0d 10021 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  0  <_ 
( ! `  k
) )
41 nn0p1nn 10003 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
4241nnge1d 9788 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  1  <_ 
( k  +  1 ) )
4338, 33, 40, 42lemulge11d 9694 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ( ! `  k )  x.  (
k  +  1 ) ) )
44 facp1 11293 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
4543, 44breqtrrd 4049 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ! `  (
k  +  1 ) ) )
4645adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  <_  ( ! `  ( k  +  1 ) ) )
47 faccl 11298 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
4847nnred 9761 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
4948adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
5038adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
51 peano2nn0 10004 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
52 faccl 11298 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  +  1 )  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
5351, 52syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
5453nnred 9761 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
5554adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  e.  RR )
56 letr 8914 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  k )  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5749, 50, 55, 56syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5846, 57mpan2d 655 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  M )  <_  ( ! `  k )  ->  ( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) )
5958imim2d 48 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6059com23 72 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  ->  ( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6136, 60sylbird 226 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
62 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( M  =  ( k  +  1 )  ->  ( ! `  M )  =  ( ! `  ( k  +  1 ) ) )
6348leidd 9339 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( ! `
 M )  <_ 
( ! `  M
) )
64 breq2 4027 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  (
( ! `  M
)  <_  ( ! `  M )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6563, 64syl5ibcom 211 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6662, 65syl5 28 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6766adantr 451 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6867a1dd 42 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
6961, 68jaod 369 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) )
7035, 69sylbid 206 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7170ex 423 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( M  <_  ( k  +  1 )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7271com13 74 . . . . . . . 8  |-  ( M  <_  ( k  +  1 )  ->  (
k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7372com4l 78 . . . . . . 7  |-  ( k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) )  -> 
( M  <_  (
k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7473a2d 23 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( M  e. 
NN0  ->  ( M  <_ 
( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7574imp4a 572 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7629, 75syl5bi 208 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ( M  e. 
NN0  /\  M  <_  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
775, 10, 15, 20, 28, 76nn0ind 10108 . . 3  |-  ( N  e.  NN0  ->  ( ( M  e.  NN0  /\  M  <_  N )  -> 
( ! `  M
)  <_  ( ! `  N ) ) )
78773impib 1149 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
79783com12 1155 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965   !cfa 11288
This theorem is referenced by:  facavg  11314  aaliou3lem6  19728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-fac 11289
  Copyright terms: Public domain W3C validator